Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Viruses ; 16(2)2024 02 11.
Article in English | MEDLINE | ID: mdl-38400055

ABSTRACT

The EMCV L and 2A proteins are virulence factors that counteract host cell defense mechanisms. Both L and 2A exhibit antiapoptotic properties, but the available data were obtained in different cell lines and under incomparable conditions. This study is aimed at checking the role of these proteins in the choice of cell death type in three different cell lines using three mutants of EMCV lacking functional L, 2A, and both proteins together. We have found that both L and 2A are non-essential for viral replication in HeLa, BHK, and RD cell lines, as evidenced by the viability of the virus in the absence of both functional proteins. L-deficient infection led to the apoptotic death of HeLa and RD cells, and the necrotic death of BHK cells. 2A-deficient infection induced apoptosis in BHK and RD cells. Infection of HeLa cells with the 2A-deficient mutant was finalized with exclusive caspase-dependent death with membrane permeabilization, morphologically similar to pyroptosis. We also demonstrated that inactivation of both proteins, along with caspase inhibition, delayed cell death progression. The results obtained demonstrate that proteins L and 2A play a critical role in choosing the path of cell death during infection, but the result of their influence depends on the properties of the host cells.


Subject(s)
Encephalomyocarditis virus , Viral Proteins , Humans , HeLa Cells , Viral Proteins/genetics , Viral Proteins/metabolism , Encephalomyocarditis virus/physiology , Apoptosis , Caspases/genetics , Caspases/metabolism
2.
Viruses ; 15(9)2023 08 29.
Article in English | MEDLINE | ID: mdl-37766235

ABSTRACT

We present the results of a randomized, double-blind, placebo-controlled, multi-center clinical trial phase I/II of the tolerability, safety, and immunogenicity of the inactivated whole virion concentrated purified coronavirus vaccine CoviVac in volunteers aged 18-60 and open multi-center comparative phase IIb clinical trial in volunteers aged 60 years and older. The safety of the vaccine was assessed in 400 volunteers in the 18-60 age cohort who received two doses of the vaccine (n = 300) or placebo (n = 100) and in 200 volunteers in 60+ age cohort all of whom received three doses of the vaccine. The studied vaccine has shown good tolerability and safety. No deaths, serious adverse events (AEs), or other significant AEs related to vaccination have been detected. The most common AE in vaccinated participants was pain at the injection site (p < 0.05). Immunogenicity assessment in stage 3 of Phase II was performed on 167 volunteers (122 vaccinated and 45 in Placebo Group) separately for the participants who were anti-SARS-CoV-2 nAB negative (69/122 in Vaccine Group and 28/45 in Placebo Group) or positive (53/122 in Vaccine Group and 17/45 in Placebo Group) at screening. On Day 42 after the 1st vaccination, the seroconversion rate in participants who were seronegative at screening was 86.9%, with the average geometric mean neutralizing antibody (nAB) titer of 1:20. A statistically significant (p < 0.05) increase in IFN-γ production by peptide-stimulated T-cells was observed at Days 14 and 21 after the 1st vaccination. In participants who were seropositive at screening but had nAB titers below 1:256, the rate of fourfold increase in nAB levels was 85.2%, while in the participants with nAB titers > 1:256, the rate of fourfold increase in nAB levels was below 45%; the participants who were seropositive at screening of the 2nd vaccination did not lead to a significant increase in nAB titers. In conclusion, inactivated vaccine CoviVac has shown good tolerability and safety, with over 85% NT seroconversion rates after complete vaccination course in participants who were seronegative at screening in both age groups: 18-60 and 60+. In participants who were seropositive at screening and had nAB titers below 1:256, a single vaccination led to a fourfold increase in nAB levels in 85.2% of cases. These findings indicate that CoviVac can be successfully used both for primary vaccination in a two-dose regimen and for booster vaccination as a single dose in individuals with reduced neutralizing antibody levels.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Middle Aged , Aged , COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , Vaccines, Attenuated , Antibodies, Neutralizing , Antibodies, Viral
3.
Viruses ; 14(11)2022 11 10.
Article in English | MEDLINE | ID: mdl-36366584

ABSTRACT

Many viruses are known to trigger endoplasmic reticulum (ER) stress in host cells, which in turn can develop a protective unfolded protein response (UPR). Depending on the conditions, the UPR may lead to either cell survival or programmed cell death. One of three UPR branches involves the upregulation of Xbp1 transcription factor caused by the unconventional cytoplasmic splicing of its mRNA. This process is accomplished by the phosphorylated form of the endoribonuclease/protein kinase Ire1/ERN1. Here, we show that the phosphorylation of Ire1 is up-regulated in HeLa cells early in enterovirus infection but down-regulated at later stages. We also find that Ire1 is cleaved in poliovirus- and coxsackievirus-infected HeLa cells 4-6 h after infection. We further show that the Ire1-mediated Xbp1 mRNA splicing is repressed in infected cells in a time-dependent manner. Thus, our results demonstrate the ability of enteroviruses to actively modulate the Ire1-Xbp1 host defensive pathway by inducing phosphorylation and proteolytic cleavage of the ER stress sensor Ire1, as well as down-regulating its splicing activity. Inactivation of Ire1 could be a novel mode of the UPR manipulation employed by viruses to modify the ER stress response in the infected cells.


Subject(s)
Enterovirus Infections , Enterovirus , Humans , Endoplasmic Reticulum Stress , Endoribonucleases/genetics , Endoribonucleases/metabolism , Enterovirus/genetics , HeLa Cells , Protein Serine-Threonine Kinases/genetics , RNA, Messenger/genetics , Signal Transduction , Unfolded Protein Response , X-Box Binding Protein 1/genetics , X-Box Binding Protein 1/metabolism
4.
Vaccines (Basel) ; 10(6)2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35746557

ABSTRACT

Various types of COVID-19 vaccines, including adenovirus, mRNA, and inactivated ones, have been developed and approved for clinical use worldwide. Inactivated vaccines are produced using a proven technology that is widely used for the production of vaccines for the prevention and control of infectious diseases, including influenza and poliomyelitis. The development of inactivated whole-virion vaccines commonly includes several stages: the production of cellular and viral biomass in cell culture; inactivation of the virus; filtration and ultrafiltration; chromatographic purification of the viral antigen; and formulation with stabilizers and adjuvants. In this study, the suitability of four resins for Size-Exclusion Chromatography was investigated for the purification of a viral antigen for the human COVID-19 vaccine.

5.
Front Immunol ; 13: 907341, 2022.
Article in English | MEDLINE | ID: mdl-35711442

ABSTRACT

Background: Effective response to emerging pandemic threats is complicated by the need to develop specific vaccines and other medical products. The availability of broadly specific countermeasures that could be deployed early in the pandemic could significantly alter its course and save countless lives. Live attenuated vaccines (LAVs) were shown to induce non-specific protection against a broad spectrum of off-target pathogens by stimulating innate immune responses. The purpose of this study was to evaluate the effect of immunization with bivalent Oral Poliovirus Vaccine (bOPV) on the incidence of COVID-19 and other acute respiratory infections (ARIs). Methods and Findings: A randomized parallel-group comparative study was conducted in Kirov Medical University. 1115 healthy volunteers aged 18 to 65 were randomized into two equal groups, one of which was immunized orally with a single dose of bOPV "BiVac Polio" and another with placebo. The study participants were monitored for three months for respiratory illnesses including COVID-19. The endpoint was the incidence of acute respiratory infections and laboratory confirmed COVID-19 in both groups during 3 months after immunization. The number of laboratory-confirmed cases of COVID-19 was significantly lower in the vaccinated group than in placebo (25 cases vs. 44, p=0.036). The difference between the overall number of clinically diagnosed respiratory illnesses in the two groups was not statistically significant. Conclusions: Immunization with bOPV reduced the number of laboratory-confirmed COVID-19 cases, consistent with the original hypothesis that LAVs induce non-specific protection against off-target infections. The findings are in line with previous observations of the protective effects of OPV against seasonal influenza and other viral and bacterial pathogens. The absence of a statistically significant effect on the total number of ARIs may be due to the insufficient number of participants and heterogeneous etiology of ARIs. OPV could be used to complement specific coronavirus vaccines, especially in regions of the world where the vaccines are unavailable, and as a stopgap measure for urgent response to future emerging infections. Clinical trial registration number NCT05083039 at clinicaltrals.gov https://clinicaltrials.gov/ct2/show/NCT05083039?term=NCT05083039&draw=2&rank=1.


Subject(s)
COVID-19 , Poliomyelitis , Respiratory Tract Infections , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Incidence , Poliomyelitis/epidemiology , Poliomyelitis/prevention & control , Poliovirus Vaccine, Oral , Vaccination/methods
6.
Microsc Res Tech ; 85(2): 562-569, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34498784

ABSTRACT

The severe COVID-19 pandemic drives the research toward the SARS-CoV-2 virion structure and the possible therapies against it. Here, we characterized the ß-propiolactone inactivated SARS-CoV-2 virions using transmission electron microscopy (TEM) and atomic force microscopy (AFM). We compared the SARS-CoV-2 samples purified by two consecutive chromatographic procedures (size exclusion chromatography [SEC], followed by ion-exchange chromatography [IEC]) with samples purified by ultracentrifugation. The samples prepared using SEC and IEC retained more spikes on the surface than the ones prepared using ultracentrifugation, as confirmed by TEM and AFM. TEM showed that the spike (S) proteins were in the pre-fusion conformation. Notably, the S proteins could be recognized by specific monoclonal antibodies. Analytical TEM showed that the inactivated virions retained nucleic acid. Altogether, we demonstrated that the inactivated SARS-CoV-2 virions retain the structural features of native viruses and provide a prospective vaccine candidate.


Subject(s)
COVID-19 , Propiolactone , Animals , Chlorocebus aethiops , Humans , Pandemics , SARS-CoV-2 , Vaccines, Inactivated , Vero Cells
7.
Emerg Microbes Infect ; 10(1): 1790-1806, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34427172

ABSTRACT

The unprecedented in recent history global COVID-19 pandemic urged the implementation of all existing vaccine platforms to ensure the availability of the vaccines against COVID-19 to every country in the world. Despite the multitude of high-quality papers describing clinical trials of different vaccine products, basic detailed data on general toxicity, reproductive toxicity, immunogenicity, protective efficacy and durability of immune response in animal models are scarce. Here, we developed a ß-propiolactone-inactivated whole virion vaccine CoviVac and assessed its safety, protective efficacy, immunogenicity and stability of the immune response in rodents and non-human primates. The vaccine showed no signs of acute/chronic, reproductive, embryo- and fetotoxicity, or teratogenic effects, as well as no allergenic properties in studied animal species. The vaccine induced stable and robust humoral immune response both in form of specific anti-SARS-CoV-2 IgG and NAbs in mice, Syrian hamsters, and common marmosets. The NAb levels did not decrease significantly over the course of one year. The course of two immunizations protected Syrian hamsters from severe pneumonia upon intranasal challenge with the live virus. Robustness of the vaccine manufacturing process was demonstrated as well. These data encouraged further evaluation of CoviVac in clinical trials.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunity, Humoral , SARS-CoV-2/immunology , Vaccines, Inactivated/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , Callithrix , Cricetinae , Disease Models, Animal , Drug Evaluation, Preclinical , Female , Guinea Pigs , Humans , Immunogenicity, Vaccine , Immunoglobulin G/immunology , Male , Mesocricetus , Mice , Mice, Inbred BALB C , Rats , Rats, Wistar , SARS-CoV-2/genetics , Time Factors , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/adverse effects
8.
Vaccines (Basel) ; 9(6)2021 May 29.
Article in English | MEDLINE | ID: mdl-34072466

ABSTRACT

Global polio eradication requires both safe and effective vaccines, and safe production processes. Sabin oral poliomyelitis vaccine (OPV) strains can evolve to virulent viruses and result in poliomyelitis outbreaks, and conventional inactivated poliomyelitis vaccine (Salk-IPV) production includes accumulation of large stocks of neurovirulent wild polioviruses. Therefore, IPV based on attenuated OPV strains seems a viable option. To increase the global supply of affordable inactivated vaccine in the still not-polio free world we developed an IPV made from the Sabin strains-PoliovacSin. Clinical trials included participants 18-60 years of age. A phase I single-center, randomized, double-blind placebo-controlled clinical trial included 60 participants, who received one dose of PoliovacSin or Placebo. A phase II multicenter, randomized, double-blind, comparative clinical trial included 200 participants, who received one dose of PoliovacSin or Imovax Polio. All vaccinations were well tolerated, and PoliovacSin had a comparable safety profile to the Placebo or the reference Imovax Polio preparations. A significant increase in neutralizing antibody levels to polioviruses types 1-3 (Sabin and wild) was observed in PoliovacSin and Imovax Polio vaccinated groups. Therefore, clinical trials confirmed good tolerability, low reactogenicity, and high safety profile of the PoliovacSin and its pronounced immunogenic properties. The preparation was approved for clinical trials involving infants.

10.
Int J Infect Dis ; 99: 40-46, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32721529

ABSTRACT

OBJECTIVES: The outbreak of coronavirus disease 2019 (COVID-19) started in December 2019 in China and then spread worldwide over the following months, involving 188 countries. The objective of this study was to determine the molecular epidemiology of the COVID-19 outbreak in Russia. METHODS: In this study, two severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains were isolated and genetically characterized. A phylogenetic analysis of all available Russian sequences was then performed and these were compared to the epidemiological data on COVID-19 incidence to evaluate the molecular epidemiology and pattern of virus spread in the territory of Russia. RESULTS AND CONCLUSIONS: Whole genome analysis of the isolates obtained in this study and 216 others isolated in Russia revealed a set of seven common mutations when compared to the original Wuhan virus, including amino acid substitutions in spike protein S and nucleoprotein N, possibly affecting their properties. Phylogenetic analysis of all Russian sequences and 8717 sequences from other countries showed multiple importations of the virus into Russia, local circulation, and several patterns of virus spread.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , COVID-19 , Disease Outbreaks , Genome, Viral , Humans , Pandemics , Phylogeny , Russia/epidemiology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...