Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurooncol ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842695

ABSTRACT

PURPOSE: Angioleiomyoma, predominantly arising from the extremities, is a benign soft tissue tumor. Reports on its intracranial location are rare. We assessed clinical, radiological, and pathological features of intracranial angioleiomyoma (iALM) treated at our neurosurgical institution. METHODS: We consecutively enrolled all patients with neuropathologically confirmed iALM treated at a single neurosurgical institution between 2013 and 2021. Clinical and imaging data were collected, and histological tissue sections were analyzed. A review of the literature on iALM was conducted. RESULTS: Seven patients with iALM (four female) with a median age of 45 years (range: 32-76 years) were identified. In three cases, the lesion was found incidentally. In magnetic resonance imaging (MRI), all tumors were hypo- to isointense on T1-weighted, hyperintense on T2-weighted sequences, and gadolinium-enhancing. A strong FLAIR signal was seen in six patients. Surgery consisted of gross total resection in all cases without perioperative complications. Neuropathological staining was positive for smooth muscle actin (SMA) in all lesions. Mature smooth muscle cells arranged around blood vessels were typically observed. The Ki-67 index was ≤ 3%. The patients were discharged after a median of 6 days (range: 4-9 days). During a median follow-up time of 14 months (range: 4-41 months), no tumor recurrence occurred. In the current literature, 42 additional cases of iALM were identified. CONCLUSION: Intracranial angioleiomyoma is a benign soft tissue tumor treated by gross total resection. Tumor morphology and positive staining for SMA lead to the neuropathological diagnosis.

2.
Neuroimage Clin ; 38: 103436, 2023.
Article in English | MEDLINE | ID: mdl-37236052

ABSTRACT

BACKGROUND: Two statistical models have been established to evaluate characteristics associated with postoperative motor outcome in patients with glioma associated to the motor cortex (M1) or the corticospinal tract (CST). One model is based on a clinicoradiological prognostic sum score (PrS) while the other one relies on navigated transcranial magnetic stimulation (nTMS) and diffusion-tensor-imaging (DTI) tractography. The objective was to compare the models regarding their prognostic value for postoperative motor outcome and extent of resection (EOR) with the aim of developing a combined, improved model. METHODS: We retrospectively analyzed a consecutive prospective cohort of patients who underwent resection for motor associated glioma between 2008 and 2020, and received a preoperative nTMS motor mapping with nTMS-based diffusion tensor imaging tractography. The primary outcomes were the EOR and the motor outcome (on the day of discharge and 3 months postoperatively according to the British Medical Research Council (BMRC) grading). For the nTMS model, the infiltration of M1, tumor-tract distance (TTD), resting motor threshold (RMT) and fractional anisotropy (FA) were assesed. For the PrS score (ranging from 1 to 8, lower scores indicating a higher risk), we assessed tumor margins, volume, presence of cysts, contrast agent enhancement, MRI index (grading white matter infiltration), preoperative seizures or sensorimotor deficits. RESULTS: Two hundred and three patients with a median age of 50 years (range: 20-81 years) were analyzed of whom 145 patients (71.4%) received a GTR. The rate of transient new motor deficits was 24.1% and of permanent new motor deficits 18.8%. The nTMS model demonstrated a good discrimination ability for the short-term motor outcome at day 7 of discharge (AUC = 0.79, 95 %CI: 0.72-0.86) and the long-term motor outcome after 3 months (AUC = 0.79, 95 %CI: 0.71-0.87). The PrS score was not capable to predict the postoperative motor outcome in this cohort but was moderately associated with the EOR (AUC = 0.64; CI 0.55-0.72). An improved, combined model was calculated to predict the EOR more accurately (AUC = 0.74, 95 %CI: 0.65-0.83). CONCLUSION: The nTMS model was superior to the clinicoradiological PrS model for potentially predicting the motor outcome. A combined, improved model was calculated to estimate the EOR. Thus, patient counseling and surgical planning in patients with motor-associated tumors should be performed using functional nTMS data combined with tractography.


Subject(s)
Brain Neoplasms , Glioma , Humans , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Transcranial Magnetic Stimulation/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Brain Neoplasms/pathology , Diffusion Tensor Imaging/methods , Retrospective Studies , Prospective Studies , Brain Mapping/methods , Glioma/diagnostic imaging , Glioma/surgery , Glioma/pathology , Risk Assessment
3.
J Neurosurg Case Lessons ; 3(25): CASE21567, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35733839

ABSTRACT

BACKGROUND: In this case report the authors present two female patients with intracranial mucormycosis after coronavirus disease 2019 (COVID-19). OBSERVATIONS: The first patient was a 30-year-old woman with no past medical history or allergies who presented with headaches and vomiting. Magnetic resonance imaging (MRI) and computed tomography of the skull showed an endonasal infection, which had already destroyed the frontal skull base and caused a large frontal intracranial abscess. The second patient was a 29-year-old woman with multiple pre-existing conditions, who was initially admitted to the hospital due to a COVID-19 infection and later developed a hemiparesis of the right side. Here, the MRI scan showed an abscess configuration in the left motor cortex. In both cases, rapid therapy was performed by surgical clearance and abscess evacuation followed by antifungal, antidiabetic, and further supportive treatment for several weeks. LESSONS: Both cases are indicative of a possible correlation of mucormycosis in the setting of severe immunosuppression involved with COVID-19, both iatrogenic with the use of steroids and previous medical history. Furthermore, young and supposedly healthy patients can also be affected by this rare disease.

4.
J Neurosurg ; 136(4): 1194-1206, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34534966

ABSTRACT

OBJECTIVE: The authors sought to validate the navigated transcranial magnetic stimulation (nTMS)-based risk stratification model. The postoperative motor outcome in glioma surgery may be preoperatively predicted based on data derived by nTMS. The tumor-to-tract distance (TTD) and the interhemispheric resting motor threshold (RMT) ratio (as a surrogate parameter for cortical excitability) emerged as major factors related to a new postoperative deficit. METHODS: In this bicentric study, a consecutive prospectively collected cohort underwent nTMS mapping with diffusion tensor imaging (DTI) fiber tracking of the corticospinal tract prior to surgery of motor eloquent gliomas. The authors analyzed whether the following items were associated with the patient's outcome: patient characteristics, TTD, RMT value, and diffusivity parameters (fractional anisotropy [FA] and apparent diffusion coefficient [ADC]). The authors assessed the validity of the published risk stratification model and derived a new model. RESULTS: A new postoperative motor deficit occurred in 36 of 165 patients (22%), of whom 20 patients still had a deficit after 3 months (13%; n3 months = 152). nTMS-verified infiltration of the motor cortex as well as a TTD ≤ 8 mm were confirmed as risk factors. No new postoperative motor deficit occurred in patients with TTD > 8 mm. In contrast to the previous risk stratification, the RMT ratio was not substantially correlated with the motor outcome, but high RMT values of both the tumorous and healthy hemisphere were associated with worse motor outcome. The FA value was negatively associated with worsening of motor outcome. Accuracy analysis of the final model showed a high negative predictive value (NPV), so the preoperative application may accurately predict the preservation of motor function in particular (day of discharge: sensitivity 47.2%, specificity 90.7%, positive predictive value [PPV] 58.6%, NPV 86.0%; 3 months: sensitivity 85.0%, specificity 78.8%, PPV 37.8%, NPV 97.2%). CONCLUSIONS: This bicentric validation analysis further improved the model by adding the FA value of the corticospinal tract, demonstrating the relevance of nTMS/nTMS-based DTI fiber tracking for clinical decision making.


Subject(s)
Brain Neoplasms , Transcranial Magnetic Stimulation , Brain Mapping/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Diffusion Tensor Imaging/methods , Humans , Neuronavigation/methods , Risk Assessment , Transcranial Magnetic Stimulation/methods
5.
Brain Sci ; 11(11)2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34827516

ABSTRACT

BACKGROUND: Surgical planning with nTMS-based tractography is proven to increase safety during surgery. A preoperative risk stratification model has been published based on the M1 infiltration, RMT ratio, and tumor to corticospinal tract distance (TTD). The correlation of TTD with corticospinal tract to resection cavity distance (TRD) and outcome is needed to further evaluate the validity of the model. AIM OF THE STUDY: To use the postop MRI-derived resection cavity to measure how closely the resection cavity approximated the preoperatively calculated corticospinal tract (CST) and how this correlates with the risk model and the outcome. METHODS: We included 183 patients who underwent nTMS-based DTI and surgical resection for presumed motor-eloquent gliomas. TTD, TRD, and motor outcome were recorded and tested for correlations. The intraoperative monitoring documentation was available for a subgroup of 48 patients, whose responses were correlated to TTD and TRD. RESULTS: As expected, TTD and TRD showed a good correlation (Spearman's ρ = 0.67, p < 0.001). Both the TTD and the TRD correlated significantly with the motor outcome at three months (Kendall's Tau-b 0.24 for TTD, 0.31 for TRD, p < 0.001). Interestingly, the TTD and TRD correlated only slightly with residual tumor volume, and only after correction for outliers related to termination of resection due to intraoperative monitoring events or the proximity of other eloquent structures (TTD ρ = 0.32, p < 0.001; TRD ρ = 0.19, p = 0.01). This reflects the fact that intraoperative monitoring (IOM) phenomena do not always correlate with preoperative structural analysis, and that additional factors influence the intraoperative decision to abort resection, such as the adjacency of other vulnerable structures. The TTD was also significantly correlated with variations in motor evoked potential (MEP) responses (no/reversible decrease vs. irreversible decrease; p = 0.03). CONCLUSIONS: The TTD approximates the TRD well, confirming the best predictive parameter and giving strength to the nTMS-based risk stratification model. Our analysis of TRD supports the use of the nTMS-based TTD measurement to estimate the resection preoperatively, also confirming the 8 mm cutoff. Nevertheless, the TRD proved to have a slightly stronger correlation with the outcome as the surgeon's experience, anatomofunctional knowledge, and MEP observations influence the expected EOR.

SELECTION OF CITATIONS
SEARCH DETAIL
...