Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis ; 23(2): 3, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36729421

ABSTRACT

We describe a system-the Binocular Varichrome and Accommodation Measurement System-that can be used to measure and correct the eye's longitudinal and transverse chromatic aberration (LCA and TCA) and to perform vision tests with custom corrections. We used the system to investigate how LCA and TCA affect visual performance. Specifically, we studied the effects of LCA and TCA on visual acuity, contrast sensitivity, and chromostereopsis. LCA exhibited inter subject variability but followed expected trends compared with previous reports. TCA at the fovea was variable between individuals but with a tendency for the shift at shorter wavelengths to be more temporalward in the visual field in each eye. We found that TCA was generally greater when LCA was corrected. For visual acuity, we found that a measurable benefit was realized only with both LCA and TCA correction unless the TCA was low. For contrast sensitivity, we found that the best sensitivity to a 10-cycle/degree polychromatic grating was attained when LCA and TCA were corrected. Finally, we found that the primary cause of chromostereopsis is the TCA of the eyes.


Subject(s)
Accommodation, Ocular , Visual Fields , Humans , Visual Acuity , Fovea Centralis , Contrast Sensitivity
2.
Front Cell Neurosci ; 15: 713538, 2021.
Article in English | MEDLINE | ID: mdl-34621157

ABSTRACT

The localization and measurement of neuronal activity magnitude at high spatial and temporal resolution are essential for mapping and better understanding neuronal systems and mechanisms. One such example is the generation of retinotopic maps, which correlates localized retinal stimulation with the corresponding specific visual cortex responses. Here we evaluated and compared seven different methods for extracting and localizing cortical responses from voltage-sensitive dye imaging recordings, elicited by visual stimuli projected directly on the rat retina by a customized projection system. The performance of these methods was evaluated both qualitatively and quantitatively by means of two cluster separation metrics, namely, the (adjusted) Silhouette Index (SI) and the (adjusted) Davies-Bouldin Index (DBI). These metrics were validated using simulated data, which showed that Temporally Structured Component Analysis (TSCA) outperformed all other analysis methods for localizing cortical responses and generating high-resolution retinotopic maps. The analysis methods, as well as the use of cluster separation metrics proposed here, can facilitate future research aiming to localize specific activity at high resolution in the visual cortex or other brain areas.

3.
Biomed Opt Express ; 10(10): 5117-5129, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31646034

ABSTRACT

High-resolution recording of visual cortex activity is an important tool for vision research. Using a customized digital mirror device (DMD) - based system equipped with retinal imaging, we projected visual stimuli directly on the rat retina and recorded cortical responses by voltage-sensitive dye imaging. We obtained robust cortical responses and generated high-resolution retinotopic maps at an unprecedented retinal resolution of 4.6 degrees in the field of view, while further distinguishing between normal and pathological retinal areas. This system is a useful tool for studying the cortical response to localized retinal stimulation and may shed light on various cortical plasticity processes.

4.
Article in English | MEDLINE | ID: mdl-30489259

ABSTRACT

OBJECTIVE: In this study we present a novel approach for inducing vasoconstriction by pulsed electrical treatment delivered via endovascular electrodes, which can be used in cases where external access to the vessel is limited. METHODS: Using computer simulations, we optimized various geometries of endovascular electrodes to maximize the induced electric field on the arterial wall. Using the optimal configuration parameters, we investigated endovascular induced vasoconstriction in both the carotid and femoral sheep arteries. RESULTS: Endovascular electrodes induced robust vasoconstriction in the carotid artery of sheep, showing gradual recovery following treatment. Moreover, the obtained vasoconstriction was accompanied by a sevenfold decrease in blood loss for 100% constriction, compared with no treatment (6ml vs 42ml, p<0.001). The femoral artery was less amenable to the electrical treatment, which we hypothesize results from the reduced density of the sympathetic system's innervation of the adventitia of the sheep femoral artery, as was validated by immunohistochemical analysis. Finally, treatment safety was validated through arterial histological studies, in which no adverse effect was observed, and through computer modeling, which depicted a negligible temperature increase. SIGNIFICANCE: These results are an important step toward developing a novel approach for inducing reversible and controlled vasoconstriction in arteries that are remote from access.

SELECTION OF CITATIONS
SEARCH DETAIL
...