Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Environ Manage ; 336: 117612, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36967694

ABSTRACT

Safe and effective circulation of nutrient-rich meat and bone meal (MBM) could become a carbon-based alternative to limited chemical fertilizers (CFs). Therefore, MBM biochars (MBMCs) were produced at 500, 800, and 1000 °C to evaluate their effects on plant growth, nutrient uptake, and soil characteristics. The results revealed that MBMC produced at 500 °C (MBMC500) contained the maximum amount of C, N, and phytoavailable P. All additional MBMC doses with recommended CF increased sorghum shoot yield (6.7-16%) and significantly improved P uptake. Additional experiments were conducted with decreasing doses of CF (100-0%) with or without MBMC500 (7 t/ha) to quantify its actual fertilizing value. MBMC500 showed the capability to reduce CF requirement by 20% without compromising the optimum yield (by 100% CF) while increasing pH, CEC, total-N, available-P, Mg, and microbial population of post-harvest soil. Although a δ15N analysis confirmed MBMC500 as a source of plant N, a reduction in N uptake by MBMC500 + 80% CF treatment compared to 100% CF might have limited further sorghum growth. Thus, future studies should concentrate on producing MBMC with better N utilization capability and achieving maximum CF reduction without negative environmental impacts.


Subject(s)
Fertilizers , Soil , Fertilizers/analysis , Charcoal , Crop Production/methods , Meat/analysis , Nitrogen/analysis , Agriculture/methods
2.
Waste Manag ; 162: 1-7, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36913845

ABSTRACT

A self-heating torrefaction system was developed to overcome the difficulties in converting high-moisture biomass to biochar. In self-heating torrefaction, the ventilation rate and ambient pressure must be set properly to initiate the process. However, the minimum temperature at which self-heating begins is unclear because the effects of these operating variables on the heat balance are not theoretically understood. The present report presents a mathematical model for the self-heating of dairy manure based on the heat balance equation. The first step was to estimate the heat source; experimental data showed that the activation energy for the chemical oxidation of dairy manure is 67.5 kJ/mol. Next, the heat balance of feedstock in the process was analyzed. Results revealed that the higher the ambient pressure and the lower the ventilation rate at any given pressure, the lower the temperature at which self-heating is induced. The lowest induction temperature was 71 °C at a ventilation rate of 0.05 L min-1 kg-AFS-1 (AFS: ash-free solid). The model also revealed that the ventilation rate significantly affects the heat balance of feedstock and drying rate, suggesting an optimal range for ventilation.


Subject(s)
Hot Temperature , Manure , Manure/analysis , Heating , Temperature , Models, Theoretical , Biomass
3.
PLoS One ; 17(7): e0269935, 2022.
Article in English | MEDLINE | ID: mdl-35849561

ABSTRACT

There are many advantages to liquid-based hydrothermal carbonization (L-HTC) but the need to immerse the biomass in water generates more post-process water, hindering the commercialisation of HTC. To address this issue, this study investigated the feasibility of vapour-based HTC (V-HTC), which minimizes the water required. Dairy manure was hydrothermally treated at temperatures of 200, 230, 255 and 270°C and biomass-to-water ratios (B/W) of 0.1, 0.18, 0.25, 0.43, 0.67 and 1.0 for 20 minutes, then the produced hydrochars were characterized by calorific, proximate, ultimate and thermogravimetric analyses. The results showed that the mass yields of hydrochar decreased with increasing temperature but were essentially stable at high B/W ratios. Notably, the calorific values of the hydrochars increased with increasing temperature and B/W ratio, and the energy density increased by 46%. Due to the higher mass yield and increased energy density, maximum energy yields at each temperature (86.0-97.4%) were observed at a B/W ratio of 1.0. The proximate and ultimate analyses revealed that the degree of coalification, such as the increase in carbon content and decrease in oxygen and volatile matter, progressed more under V-HTC than L-HTC conditions, likely because the lower liquid content in V-HTC facilitates the formation of secondary char and increases the reaction severity due to higher acidity. This study showed a potential approach for upgrading a semi-solid-state biomass by V-HTC.


Subject(s)
Manure , Water , Biomass , Carbon , Temperature
4.
Sci Total Environ ; 822: 153509, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35101507

ABSTRACT

Biochar-based fertilizers (BBFs) are attracting considerable interest due to their potential to improve soil properties and the nutrient use efficiency of plants. However, a sustainable agricultural system requires decreased dependency on chemical fertilizer for BBF production and further enhancement of the slow-release performance of BBFs. In this study, we propose a simple biochar-based slow-release fertilizer synthesis technique involving the co-pyrolysis of 10 to 25% (w/w) Ca-bentonite with chicken manure as the only nutrient source (N, P, K). To evaluate nutrient release in contrasting soil media, we mixed pristine and modified chicken manure biochars (CMB) with both quartz sand and clay loam soil and compared the release with that of the recommended fertilizer dose for sweet corn (Zea mays convar. saccharata). Fourier transform infrared spectroscopy and energy-dispersive X-ray spectroscopy revealed that Ca-bentonite reduced readily soluble orthophosphates by forming less-soluble Ca/Mg-phosphates. In addition, significantly slower K release in soil (on average ~ 22% slower than pristine CMB) was observed from biochar containing 25% Ca-bentonite, since K is strongly adsorbed in the exchange sites of crystalline bentonite during co-pyrolysis. Decomposable amides were unaltered and thus Ca-bentonite had no significant impact on N release. Comparison of nutrient release in different media indicated that on average P and K release from BBFs in coarse sand respectively was 38% and 24% higher than in clay loam, whereas N release was substantially greater (49%) in the latter, owing to significant microbial decomposition. Overall, Ca-bentonite-incorporated CMBs, without any additional fertilizer, can satisfy plant nutritional needs, and exhibit promising slow-release (P and K) performance. Further process modification is required to improve N-use efficiency after carefully considering the soil components.


Subject(s)
Fertilizers , Manure , Animals , Bentonite , Charcoal/chemistry , Chickens , Fertilizers/analysis , Nutrients , Phosphorus , Potassium , Pyrolysis , Soil/chemistry
5.
Microbes Environ ; 36(2)2021.
Article in English | MEDLINE | ID: mdl-33907062

ABSTRACT

Malodorous emissions are a crucial and inevitable issue during the decomposition of biological waste and contain a high concentration of ammonia. Biofiltration technology is a feasible, low-cost, energy-saving method that reduces and eliminates malodors without environmental impact. In the present study, we evaluated the effectiveness of compost from cattle manure and food waste as deodorizing media based on their removal of ammonia and the expression of ammonia-oxidizing genes, and identified the bacterial and archaeal communities in these media. Ammonia was removed by cattle manure compost, but not by food waste compost. The next-generation sequencing of 16S ribosomal RNA obtained from cattle manure compost revealed the presence of ammonia-oxidizing bacteria (AOB), including Cytophagia, Alphaproteobacteria, and Gammaproteobacteria, and ammonia-oxidizing archaea (AOA), such as Thaumarchaeota. In cattle manure compost, the bacterial and archaeal ammonia monooxygenase A (amoA) genes were both up-regulated after exposure to ammonia (fold ratio of 14.2±11.8 after/before), and the bacterial and archaeal communities were more homologous after than before exposure to ammonia, which indicates the adaptation of these communities to ammonia. These results suggest the potential of cattle manure compost as an efficient biological deodorization medium due to the activation of ammonia-oxidizing microbes, such as AOB and AOA, and the up-regulation of their amoA genes.


Subject(s)
Archaea/enzymology , Archaeal Proteins/metabolism , Bacteria/enzymology , Bacterial Proteins/metabolism , Manure/microbiology , Oxidoreductases/metabolism , Ammonia/metabolism , Animals , Archaea/classification , Archaea/genetics , Archaea/metabolism , Archaeal Proteins/genetics , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacterial Proteins/genetics , Cattle , Composting , Filtration , Manure/analysis , Oxidation-Reduction , Oxidoreductases/genetics , Phylogeny
6.
PLoS One ; 15(5): e0233027, 2020.
Article in English | MEDLINE | ID: mdl-32469994

ABSTRACT

This paper describes the role of ambient pressure in self-heating torrefaction of livestock manure. We explored the initiating temperatures required to cause self-heating of wet dairy cattle manure at different ambient pressures (0.1, 0.4, 0.7, and 1.0 MPa). Then, we conducted proximate, elemental, and calorific analyses of biochar torrefied at 210, 250, and 290°C. The results showed that self-heating was induced at 155°C or higher for 0.1 MPa and at 115°C or lower for 0.4 MPa or higher. The decrease of the initiating temperature at elevated pressure was due not only to more oxygen, but also to the retention of moisture that can promote chemical oxidation of manure. Biochar yields decreased with increasing torrefaction temperature and pressure, and the yield difference at 0.1 and 1.0 MPa was more substantial at lower temperatures: a 29.8, 16.4, and 9.4% difference at 210, 250, and 290°C, respectively. Proximate and elemental analyses showed that elevated pressure promotes devolatilization, deoxygenation, and coalification compared to atmospheric pressure; its impact, however, was less at higher temperatures as the torrefaction temperature became more dominant. Calorific analysis revealed that elevated pressure can increase the higher heating value (HHV) on a dry and ash-free basis at 210°C because of the increase in carbon content, but its impact is limited at 250 and 290°C. Meanwhile, the HHV on a dry basis exhibited the opposite trend due primarily to an enlargement of ash content. The present study revealed that ambient pressure considerably affects the initiating temperature of self-heating and the chemical properties of biochar at a low torrefaction temperature.


Subject(s)
Charcoal/analysis , Heating , Manure/analysis , Animals , Atmospheric Pressure , Carbon/chemistry , Cattle
7.
Waste Manag ; 85: 66-72, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30803615

ABSTRACT

This report describes a new oxidative torrefaction method employing spontaneous self-heating of feedstock as a means of overcoming practical difficulties in converting livestock manure to biochar. We examined the initiating temperature required to induce self-heating of wet dairy cattle manure under 1.0 MPa pressure and conducted elemental and calorific analyses of the solid products prepared at 200, 250, and 300 °C. Self-heating was initiated with oxidation below 100 °C, and the lower limit of the initiation temperature was between 85 and 90 °C. Comparing processes performed at 0.1 and 1.0 MPa, the higher pressure promoted self-heating by both preventing heat loss due to moisture evaporation occurring at approximately 100 °C and supplying oxygen to the high-moisture feedstock. In addition, as drying occurred at 160-170 °C during the process, the system did not require pre- or post-drying. Although the heating values of the solid products decreased due to high ash content, the elemental composition of the products was altered to that of peat-like (200 °C) and lignite-like (250 and 300 °C) materials. Cessation of self-heating of the manure is recommended at approximately 250 °C to avoid severe decomposition at higher temperatures. Overall, these results demonstrated the utility of the proposed method for converting wet manure into dried biochar through self-heating as well as potential applications in manure management systems.


Subject(s)
Heating , Manure , Animals , Cattle , Charcoal , Livestock , Soil , Temperature
8.
Chemosphere ; 206: 310-319, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29754055

ABSTRACT

Animal manure is a source of the greenhouse gas nitrous oxide (N2O), therefore understanding the mechanisms underlying its production is essential for developing mitigating strategies and sustainable livestock production system. In this study, microbial communities potentially involved in multiple emission peaks during initial stage of laboratory-scale dairy manure composting with forced aeration system were investigated. Mature compost was used for the bulking agent. Change of overall bacterial community and nitrification-denitrification gene abundance were monitored by using 16S rRNA gene amoA, nirS, nirK or nosZ genes, respectively. Three N2O emission peaks were observed when the temperature reached at 45, 60 and 72 °C, at the same timing of oxygen consumption peaks. The maximum N2O emission peak was 3.86 mg h-1 kg-1 TS when the temperature reached at 60 °C. The shift of bacterial community among these experimental periods was significant, orders Flavobacteriales, Burkholderiales and Xanthomonadales increased, while orders belong to Bacillales, Lactobacillales, Clostridiales and Bacteroidales decreased. In addition, abundance of two denitrification genes (nirS and nosZ) significantly increased during this period. Clone library analysis of these genes showed that significantly increased sequences belonged to Pseudomonas-like clusters for both genes, indicates that denitrifiers possesses these genes are involved for these N2O emission peaks caused by mature compost addition.


Subject(s)
Composting/methods , Denitrification/physiology , Manure/microbiology , Nitrous Oxide/chemistry , Soil Microbiology , Animals , Manure/analysis , Nitrous Oxide/analysis
9.
PLoS One ; 13(4): e0196249, 2018.
Article in English | MEDLINE | ID: mdl-29684079

ABSTRACT

This study aimed to establish a new methodology for upgrading biomass quality using low-temperature (below 100 °C) oxidation to achieve simultaneous drying and decomposition. Sterilized manure (63% wet basis) was heated at 90 °C for 49 days under an oxidative environment. The obtained solid and moisture reduction curves indicated that drying and decomposition proceeded simultaneously. The biomass was decomposed by oxidation with the release of water, carbon dioxide, and volatile fatty acids such as acetic acid. The oxidation process stopped when the biomass was dehydrated, indicating that the water originally present in the biomass governed the process. Elemental and calorific analyses revealed no remarkable increase in carbon content or increased heating value, and a slight decrease in oxygen content. Although the severity of the process was insufficient to produce an optimum solid fuel due to the low temperature used, the process would enable the stabilization of waste biomass with low energy consumption such as using waste heat.


Subject(s)
Biofuels , Biomass , Desiccation/methods , Hot Temperature , Waste Management/methods , Animals , Biofuels/economics , Biofuels/standards , Cattle , Commerce , Conservation of Energy Resources/economics , Dairying/economics , Dairying/methods , Heating , Manure , Oxidation-Reduction , Quality Control , Recycling , Waste Management/economics , Waste Management/standards
10.
J Biosci Bioeng ; 121(1): 57-65, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26111599

ABSTRACT

Biofiltration technology based on microbial degradation and assimilation is used for the removal of malodorous compounds, such as ammonia. Microbes that degrade malodorous and/or organic substances are involved in composting and are retained after composting; therefore, mature composts can serve as an ideal candidate for a biofilter medium. In this study, we focused on different types of raw compost materials, as these are important factors determining the bacterial community profile and the chemical component of the compost. Therefore, bacterial community profiles, the abundance of the bacterial ammonia monooxygenase gene (amoA), and the quantities of chemical components were analyzed in composts produced from either food waste or cattle manure. The community profiles with the lowest beta diversity were obtained from single type of cattle manure compost. However, cattle manure composts showed greater alpha diversity, contained higher amounts of various rRNA gene fragments than those of food waste composts and contained the amoA gene by relative quantification, and Proteobacteria were abundantly found and nitrifying bacteria were detected in it. Nitrifying bacteria are responsible for ammonia oxidation and mainly belong to the Proteobacteria or Nitrospira phyla. The quantities of chemical components, such as salt, phosphorus, and nitrogen, differed between the cattle manure and food waste composts, indicating that the raw materials provided different fermentation environments that were crucial for the formation of different community profiles. The results also suggest that cattle manure might be a more suitable raw material for the production of composts to be used in the biofiltration of ammonia.


Subject(s)
Bacteria/genetics , Bacteria/isolation & purification , Manure/microbiology , Oxidoreductases/genetics , RNA, Ribosomal, 16S/genetics , Soil Microbiology , Ammonia/isolation & purification , Ammonia/metabolism , Animals , Bacteria/metabolism , Biodegradation, Environmental , Cattle , Filtration , Food , Genes, Bacterial/genetics , Genomics , Manure/analysis , Nitrogen/metabolism , Oxidation-Reduction
11.
Bioresour Technol ; 99(15): 7285-90, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18296045

ABSTRACT

The aim of this research was to evaluate the use of manufacturing wallboard paper scraps as an alternative bulking agent for dairy cattle manure composting. The characteristics of the composting process were studied based on the changes in physico-chemical parameters and final compost quality. Composting of dairy cattle manure with wallboard paper was performed in a 481-L cylindrical reactor with vacuum-type aeration. Rapid degradation of organic matter was observed during the thermophilic stage of composting due to high microbial activity. High temperature and alkaline pH conditions promoted intense ammonia emission during the early stage of composting. The number of mesophilic and thermophilic microorganisms were found to be affected by changes in temperature at different composting stages. The total nitrogen (N), phosphorus (P), potassium (K), and sodium (Na) concentrations of the mixture did not change significantly after 28days of composting. However, the presence of gypsum in the paper scraps increased the calcium content of the final compost. The wallboard paper had no phyto-inhibitory effects as shown by high germination index of final compost (GI=99%).


Subject(s)
Dairying , Manure , Paper , Soil , Animals , Cattle , Colony Count, Microbial , Hot Temperature , Hydrogen-Ion Concentration
12.
Bioresour Technol ; 97(7): 961-5, 2006 May.
Article in English | MEDLINE | ID: mdl-15975786

ABSTRACT

Investigations were carried out to find out the relationship between temperature and microbial activity in dairy cattle manure composting using oxygen uptake rate, specific growth rate and enzymatic activities during autothermal and isothermal composting experiments. In autothermal composting, oxygen uptake rate and specific growth rate were found to be most intensive in order of 43 degrees C, 60 degrees C and 54 degrees C. Isothermal composting at 54 degrees C resulted highest levels of enzymatic activity and promoted the volatile solids reduction. Based on the maximum enzymatic activity, specific growth rate appeared to be more closely linked with microbial activity in compost than with oxygen uptake rate. The enhancement of specific growth rate, enzymatic activity and volatile solids reduction were induced at 54 degrees C in cattle manure composting.


Subject(s)
Manure/microbiology , Oxygen/metabolism , Soil Microbiology , Soil , Temperature , Animals , Bioreactors/microbiology , Catalase/analysis , Catalase/metabolism , Cattle , Dairying , Female , Peptide Hydrolases/analysis , Peptide Hydrolases/metabolism , Superoxide Dismutase/analysis , Superoxide Dismutase/metabolism
13.
Bioresour Technol ; 96(16): 1821-5, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16051089

ABSTRACT

To clarify the characteristics of thermophilic bacteria in cattle manure compost, enzymatic activity and species diversity of cultivated bacteria were investigated at 54, 60, 63, 66 and 70 degrees C, which were dependent on composting temperature. The highest level of thermophilic bacterial activity was observed at 54 degrees C. Following an increase in temperature to 63 degrees C, a reduction in bacterial diversity was observed. At 66 degrees C, bacterial diversity increased again, and diverse bacteria including Thermus spp. and thermophilic Bacillus spp. appeared to adapt to the higher temperature. At 70 degrees C, bacterial activity measured as superoxide dismutase and catalase activity was significantly higher than at 66 degrees C. However, the decomposition rate of protein in the compost was lower than the rate at 66 degrees C due to the higher compost temperature.


Subject(s)
Archaea/enzymology , Catalase/metabolism , Manure/microbiology , Soil Microbiology , Soil , Superoxide Dismutase/chemistry , Temperature , Animals , Biodegradation, Environmental , Catalase/analysis , Cattle , Enzyme Activation , Species Specificity , Superoxide Dismutase/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...