Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Phys Chem B ; 128(20): 5018-5029, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38723200

ABSTRACT

Electrolyte/electrode interfaces of room-temperature ionic liquids (RTILs) exhibit hysteretic responses to different applied potentials owing to the differences in the ion adsorption/desorption processes; the ion desorption requires excess potential, which reflects the activation energy of ion desorption. Thus far, the contributions of the ion adsorption energy and the activation barrier for ion desorption toward the ion-dependent excess potential have not been quantified. Herein, we report on our infrared-visible sum-frequency generation vibrational spectroscopy study of the hysteretic responses of the anion adsorption/desorption at Pt electrode interfaces using neat, binary, and diluted RTILs composed of 1-butyl-3-methylimidazolium cations ([C4mim]+) and bis(trifluoromethanesulfonyl)amide ([TFSA]-) and trifluoromethanesulfonate ([OTf]-) anions. Experimental results are compared to the theoretical calculations for the electric double layer model. The hysteretic response of the RTIL/Pt interface derives predominantly from the activation energy of anion desorption, which causes the negative excess potential required for anion desorption. A comparison of the anion adsorption/desorption behaviors of neat RTILs with those of binary and diluted RTILs reveals that the large activation energy of anion desorption at the neat RTIL/Pt interface originates largely from the activation barrier for restructuring ionic layering in the diffuse layer.

2.
Phys Chem Chem Phys ; 23(14): 8361-8367, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33876000

ABSTRACT

A series of n-cycloparaphenylenes ([n]CPP, n = 8, 9, and 12) were studied by ultraviolet photoemission, inverse photoemission, ultraviolet-visible absorption, and X-ray photoemission spectroscopy to detect their unique electronic structures. [n]CPP has a cyclic structure in which both ends of n-poly(p-phenylene)s (nP) are connected. The molecular size dependence of the HOMO-LUMO gap of [n]CPP was investigated by direct observation and was found to increase as the molecular size increased. This trend is opposite to that of typical π-conjugated systems. Highly strained molecular structures, especially of small [n]CPPs, significantly impact their electronic structure. Insights into the electronic structure of [n]CPP obtained here will aid the design of electronic functionality of non-planar π-conjugation systems.

3.
Phys Chem Chem Phys ; 23(8): 5028-5030, 2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33595576

ABSTRACT

In our recent paper titled "Bi-layering at ionic liquid surfaces: a sum-frequency generation vibrational spectroscopy- and molecular dynamics simulation-based study" co-authored by T. Iwahashi, T. Ishiyama, Y. Sakai, A. Morita, D. Kim, and Y. Ouchi, Phys. Chem. Chem. Phys., 2020, 22, 12565 (hereafter referred to as IW), the sum-frequency (SF) spectra for a homologous series of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ([Cnmim][TFSA] n = 4, 6, 8, 10, and 12) were reported. In particular, a clear decrease in the SF signals from the [TFSA]- anions with increasing chain length of the [Cnmim]+ cation (Fig. 5 of IW) was explained in terms of "head-to-head" bi-layer formation at the air/ionic liquid (IL) interface. A comment by M. Deutsch et al. (hereafter referred to as DE) questioned this report, claiming that our proposed structure is not consistent with a multilayered electron density (ED) profile obtained by X-ray reflectivity (XR).

4.
Phys Chem Chem Phys ; 22(22): 12565-12576, 2020 Jun 14.
Article in English | MEDLINE | ID: mdl-32452479

ABSTRACT

Room-temperature ionic liquids (RTILs) are being increasingly employed as novel solvents in several fields, including chemical engineering, electrochemistry, and synthetic chemistry. To further increase their usage potential, a better understanding of the structure of their surface layer is essential. Bi-layering at the surfaces of RTILs consisting of 1-alkyl-3-methylimidazolium ([Cnmim]+; n = 4, 6, 8, 10, and 12) cations and bis(trifluoromethanesulfonyl)amide ([TFSA]-) anions was demonstrated via infrared-visible sum-frequency generation (IV-SFG) vibrational spectroscopy and molecular dynamics (MD) simulations. It was found that the sum-frequency (SF) signal from the [TFSA]- anions decreases as the alkyl chain length increases, whereas the SF signal from the r+ mode (the terminal CH3 group) of the [Cnmim]+ cations is almost the same regardless of chain length. MD simulations show the formation of a bi-layered structure consisting of the outermost first layer and a submerged second layer in a "head-to-head" molecular arrangement. The decrease in the SF signals of the normal modes of the [TFSA]- anions is caused by destructive and out-of-phase interference of vibrations of corresponding molecular moieties oriented toward each other in the first and second layers. In contrast, the r+ mode of [Cnmim]+ does not experience destructive interference because the peak position of the r+ mode differs marginally at the surface and in the bulk. Our conclusions are not limited to the system presented here. Similar bi-layered structures can be expected for the surfaces of conventional RTILs, which necessitates the consideration of bi-layering in the design and application.

5.
ACS Omega ; 2(3): 835-841, 2017 Mar 31.
Article in English | MEDLINE | ID: mdl-31457475

ABSTRACT

In the present study, surface amino-functionalized silica nanofibers (f-SiO2NFs, average diameter = 400 and 1000 nm) are used as one-dimensional (1-D) fillers of ionic liquid (IL)-based quasisolid electrolytes. On adding f-SiO2NFs to an IL (1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide, EMITFSA) containing lithium bis(trifluoromethanesulfonyl)-amide (LiTFSA), the well-dispersed 1-D nanofillers easily form a three-dimensional network structure in the IL, function as physical cross-linkers, and increase the viscosity of the composites, consequently providing a quasisolid state at a 3.5 wt % fraction of the NFs. Rheological measurements demonstrate that the prepared composites exhibit "gel-like" characteristics at 40-150 °C. All prepared composites show high ionic conductivities, on the order of 10-3 S cm-1, around room temperature. To investigate the additive effect of f-SiO2NFs in the composites, the lithium transference numbers are also evaluated. It is found that thinner NFs enhance the transference numbers of the composites. In addition, quasisolid lithium-ion cells containing the prepared composites demonstrate relatively high rate characteristics and good cycling performance at high temperature (125 °C).

6.
Phys Chem Chem Phys ; 17(38): 24587-97, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26292934

ABSTRACT

IR-visible sum-frequency generation (IV-SFG) vibrational spectroscopy and a molecular dynamics (MD) simulation were used to study the local layering order at the interface of 1-butanol-d9 and 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim]PF6), a room-temperature ionic liquid (RTIL). The presence of a local non-polar layer at the interface of the two polar liquids was successfully demonstrated. In the SFG spectra of 1-butanol-d9, we observed significant reduction and enhancement in the strength of the CD3 symmetric stretching (r(+)) mode and the antisymmetric stretching (r(-)) mode peaks, respectively. The results can be well explained by the presence of an oppositely oriented quasi-bilayer structure of butanol molecules, where the bottom layer is strongly bound by hydrogen-bonding with the PF6(-) anion. MD simulations reveal that the hydrogen-bonding of butanol with the PF6(-) anion causes the preferential orientation of the butanols; the restriction on the rotational distribution of the terminal methyl group along their C3 axis enhances the r(-) mode. As for the [bmim](+) cations, the SFG spectra taken within the CH stretch region indicate that the butyl chain of [bmim](+) points away from the bulk RTIL phase to the butanol phase at the interface. Combining the SFG spectroscopy and MD simulation results, we propose an interfacial model structure of layering, in which the butyl chains of the butanol molecules form a non-polar interfacial layer with the butyl chains of the [bmim](+) cations at the interface.

7.
Faraday Discuss ; 154: 289-301; discussion 313-33, 465-71, 2012.
Article in English | MEDLINE | ID: mdl-22455026

ABSTRACT

The interfaces of water/room temperature ionic liquids (RTIL) (1-alkyl-3-methyl imidazolium bis(trifluoromethylsulfonyl)amide ([C(n)mim]TFSA): n = 4, 8) are investigated by infrared-visible sum frequency generation (IV-SFG) vibrational spectroscopy and molecular dynamics (MD) simulation. SFG spectra taken within the SO stretch region drastically differ between air/RTIL and water/RTIL interfaces. When a RTIL surface is in contact with water, a broadened and blue-shifted SO2-ss mode peak is observed in the SFG spectra, indicating an inhomogeneous intermolecular interaction due to hydrogen bonding of the [TFSA]- anions and water molecules at the water/[C(n)mim]TFSA interface. MD simulations show the SO2 groups of the anion are preferentially orientated toward the water phase, which is consistent with the SFG spectral features. Polar orientation of the [TFSA] anion originates from the ordered structure of the alkyl chains of [C(n)mim]+ cations.


Subject(s)
Ionic Liquids/chemistry , Water/chemistry , Molecular Dynamics Simulation , Spectrophotometry, Infrared , Vibration
8.
Phys Chem Chem Phys ; 12(40): 12943-6, 2010 Oct 28.
Article in English | MEDLINE | ID: mdl-20830382

ABSTRACT

We demonstrate for the first time the formation of a non-polar alkyl-chain dividing layer between a room-temperature ionic liquid (RTIL) and an n-alcohol. This newly described non-polar interfacial layer, which should be more hydrophobic than both RTIL and alcohol phases, might find applications in liquid/liquid reaction systems, or serve as a soft nano-functional space.

9.
J Phys Chem B ; 112(38): 11936-41, 2008 Sep 25.
Article in English | MEDLINE | ID: mdl-18767767

ABSTRACT

The air/liquid interface of a room temperature ionic liquid, 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([bmim]OTf), is investigated using infrared-visible sum frequency generation (SFG) spectroscopy. The SFG spectra clearly show low-frequency modes [CF3-symmetric stretching (ss) mode and SO3-symmetric stretching (ss) mode] of the OTf anion, demonstrating the existence of anions polar oriented at the interface. The amplitude of the CF3-ss peak of the OTf anion has the opposite sign with respect to that of the SO3-ss peak, indicating that OTf anions at the surface have polar ordering where the nonpolar CF3 group points away from the bulk into the air, whereas the SO3 group points toward the bulk liquid. The line width of the SFG peak from the submerged SO3 group is appreciably narrower than that from IR absorption, suggesting the environment of the surface OTf anions is much more homogeneous than that of the bulk. The vibrational calculations also suggest that the anions and the cations form a more specific aggregated configuration at the surface as compared to the bulk.


Subject(s)
Air , Anions/chemistry , Imidazoles/chemistry , Ionic Liquids/chemistry , Mesylates/chemistry , Spectrum Analysis
10.
J Phys Chem B ; 111(18): 4860-6, 2007 May 10.
Article in English | MEDLINE | ID: mdl-17428082

ABSTRACT

The air/liquid interface of 1-alkyl-3-methylimidazolium tetrafluoroborates with the general formula [C(n)mim]BF(4) (n = 4-11) was studied using infrared-visible sum frequency generation (SFG) vibrational spectroscopy. The probability of the gauche defect per CH2-CH2 bond in the alkyl chain decreases as the number of carbon atoms in the alkyl chain increases. This observation suggests that the interaction between the alkyl chains is enhanced as the alkyl chain length becomes longer. The frequencies of the C-H stretching vibrational modes observed in the SFG spectra are higher than those of the corresponding peak positions observed in the infrared spectra of the bulk liquids. This shift is consistent with a structure in which the alkyl chain protrudes from the bulk liquid into the air. A local structure, which originates from the intermolecular interaction between the ionic liquid molecules, is proposed to explain these observations.


Subject(s)
Borates/chemistry , Ionic Liquids/chemistry , Temperature , Air , Sensitivity and Specificity , Spectrophotometry, Infrared/methods , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL
...