Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 12(5): 4019-27, 2012 May.
Article in English | MEDLINE | ID: mdl-22852342

ABSTRACT

The 'colloidal platinum' stabilized with polyvinylpyrrolidone (Pt/PVP-colloid) was dispersed in hydrogen-rich water (HW; hydrogen concentration, 0.82 ppm; oxidation-reduction potential, -583 mV) or regular water (RW; <0.01 ppm, +218 mV). And we evaluated the antioxidant activity of Pt/PVP-colloid in HW or RW on 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and improvement of blood fluidity under 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH)-induced oxidative stress. When applied with the 0.25-0.5 ppm Pt/PVP-colloid in RW or HW, the level of DPPH radicals decreased to 77.5-59.6% or 16.1-5.6%, in contrast to the level as high as 81.3% for HW alone, respectively, as measured by an electron spin resonance method. The horse blood, which was subjected to AAPH-induced oxidative stress, was incubated for 24 hr with RW or HW, and thereafter required 13.7 sec (100%) or 5.7 sec (42.3%) for passing through the micro-channels in a rheology equipment. When treated with 0.5-1.0 ppm Pt/PVP-colloid in RW or HW, the blood passage time in the micro-channels decreased dose-dependently to 9.7-7.3 sec (71.6-53.8%) or 4.3-1.3 sec (32.8-10.3%), and the rate of micro-channels clogged with erythrocyte aggregates decreased to 23.8-21.0% or 15.8-9.8%, respectively, from 42.8% for no addition of Pt/PVP. By scanning electron microscopy, AAPH-treated erythrocytes lost intact surface morphology on the membrane together with protrusions and without hollows, being indicative of impaired transforming ability, and the rate of erythrocyte agglutination was increased to 46.2%. When treated the horse blood with HW alone significantly decreased the rate of erythrocyte agglutination to 29.6%, whereas 1.0 ppm Pt/PVP-colloid in RW or HW decreased it to 24.1% or 21.1%, respectively. Thus, DPPH-radical-scavenging and erythrocyte-protecting effects of Pt/PVP-colloid in HW were superior to those of Pt/PVP-colloid in RW or Pt/PVP-free HW. The results could be mainly attributed to the enhanced antioxidant activity of Pt/PVP in HW, which may be due to captured-hydrogen on platinum.


Subject(s)
Colloids/chemistry , Colloids/pharmacology , Erythrocytes/drug effects , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , Hydrogen/chemistry , Platinum/chemistry , Platinum/pharmacology , Water/chemistry , Animals , Antioxidants/pharmacology , Erythrocytes/metabolism , Horses , Oxidative Stress/drug effects
2.
J Photochem Photobiol B ; 106: 24-33, 2012 Jan 05.
Article in English | MEDLINE | ID: mdl-22070900

ABSTRACT

Hydrogen-rich electrolyzed warm water (HW) was prepared at 41°C and exhibited dissolved hydrogen (DH) of 1.13 ppm and an oxidation-reduction potential (ORP) of -741 mV in contrast to below 0.01 ppm and+184 mV for regular warm water (RW). Fibroblasts OUMS-36 and keratinocytes HaCaT were used to examine effects of HW against UVA-ray irradiation. Type-I collagen was synthesized 1.85- to 2.03-fold more abundantly by HW application for 3-5 days than RW in OUMS-36 fibroblasts, and localized preferentially around the nuclei as shown by immunostain. HW application significantly prevented cell death and DNA damages such as nuclear condensation and fragmentation in UVA-irradiated HaCaT keratinocytes as estimated by WST-1 and Hoechst 33342 assays. HW significantly suppressed UVA-induced generation of intracellular superoxide anion radicals in both the cell lines according to NBT assay. Wrinkle repression was clinically assessed using a HW-bathing. Six Japanese subjects were enrolled in a trial of HW-bathing (DH, 0.2-0.4 ppm) every day for 3 months. HW-bathing significantly improved wrinkle in four subjects on the back of neck on 90th day as compared to 0 day. Thus, HW may serve as daily skin care to repress UVA-induced skin damages by ROS-scavenging and promotion of type-I collagen synthesis in dermis.


Subject(s)
Collagen Type I/metabolism , Fibroblasts/drug effects , Keratinocytes/drug effects , Skin Aging/drug effects , Ultraviolet Rays , Water/pharmacology , Adolescent , Adult , Aged , Apoptosis , Cell Line , DNA Damage , Dermis/metabolism , Female , Fibroblasts/radiation effects , Humans , Hydrogen/chemistry , Keratinocytes/radiation effects , Male , Middle Aged , Oxidative Stress , Reactive Oxygen Species/metabolism , Skin Aging/pathology , Skin Aging/radiation effects , Superoxides/metabolism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...