Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 26(26): 18021-18029, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38894695

ABSTRACT

In the present work, a novel approach has been made to evaluate the extraction mechanism of neodymium (Nd) using trihexyl-tetradecyl-phosphonium benzoate (TTPB) ionic liquid through nuclear magnetic resonance (NMR) techniques. A detailed study on the interactions between the extractant (Nd) and the ionic liquid (IL) is presented. The 1H NMR spectral analysis confirmed that Nd extraction took place through the benzoate anion. Furthermore, the NMR relaxation time of the anion is greatly affected affirming that Nd extraction indeed took place through the benzoate anion. This change in the relaxation time caused by the Nd ion on the protons in the anion and cation in TTPB has been used to visualize the extraction mechanism using 1H MRI. A strong change in the image intensity with respect to the time observed in the IL phase validates the extraction of Nd from the aqueous phase into the IL phase. Also, combining the 1H NMR, diffusion coefficient, Karl-Fischer and ultraviolet-visible absorption spectroscopic (UV-Vis) results, we have elucidated the co-ordination structure around Nd during the extraction process.

2.
J Chem Phys ; 140(12): 124509, 2014 Mar 28.
Article in English | MEDLINE | ID: mdl-24697461

ABSTRACT

The lithium ion diffusion coefficient of a 93% Li ß-alumina single crystal was measured for the first time using pulsed field gradient (PFG) NMR spectroscopy with two different crystal orientations. The diffusion coefficient was found to be 1.2 × 10(-11) m(2)/s in the direction perpendicular to the c axis at room temperature. The Li ion diffusion coefficient along the c axis direction was found to be very small (6.4 × 10(-13) m(2)/s at 333 K), which suggests that the macroscopic diffusion of the Li ion in the ß-alumina crystal is mainly two-dimensional. The diffusion coefficient for the same sample was also estimated using NMR line narrowing data and impedance measurements. The impedance data show reasonable agreement with PFG-NMR data, while the line narrowing measurements provided a lower value for the diffusion coefficient. Line narrowing measurements also provided a relatively low value for the activation energy and pre-exponential factor. The temperature dependent diffusion coefficient was obtained in the temperature range 297-333 K by PFG-NMR, from which the activation energy for diffusion of the Li ion was estimated. The activation energy obtained by PFG-NMR was smaller than that obtained by impedance measurements, which suggests that thermally activated defect formation energy exists for 93% Li ß-alumina single crystals. The diffusion time dependence of the diffusion coefficient was observed for the Li ion in the 93% Li ß-alumina single crystal by means of PFG-NMR experiments. Motion of Li ion in fractal dimension might be a possible explanation for the observed diffusion time dependence of the diffusion coefficient in the 93% Li ß-alumina system.

SELECTION OF CITATIONS
SEARCH DETAIL
...