Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Physiol Biochem ; 57(4): 212-225, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37463410

ABSTRACT

BACKGROUND/AIMS: Pancreatic cancer has the poorest survival rate among all cancer types. Therefore, it is essential to develop an effective treatment strategy for this cancer. METHODS: We performed carbon ion radiotherapy (CIRT) in human pancreatic cancer cell lines and analyzed their survival, apoptosis, necrosis, and autophagy. To investigate the role of CIRT-induced autophagy, autophagy inhibitors were added to cells prior to CIRT. To evaluate tumor formation, we inoculated CIRT-treated murine pancreatic cancer cells on the flank of syngeneic mice and measured tumor weight. We immunohistochemically measured autophagy levels in surgical sections from patients with pancreatic cancer who received neoadjuvant chemotherapy (NAC) plus CIRT or NAC alone. RESULTS: CIRT reduced the survival fraction of pancreatic cancer cells and induced apoptotic and necrotic alterations, along with autophagy. Preincubation with an autophagy inhibitor accelerated cell death. Mice inoculated with control pancreatic cancer cells developed tumors, while those inoculated with CIRT/autophagy inhibitor-treated cells showed significant evasion. Surgical specimens of NAC-treated patients expressed autophagy comparable to control patients, while those in the NAC plus CIRT group expressed little autophagy and nuclear staining. CONCLUSION: CIRT effectively killed the pancreatic cancer cells by inhibiting their autophagy-inducing abilities.


Subject(s)
Heavy Ion Radiotherapy , Pancreatic Neoplasms , Humans , Animals , Mice , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/radiotherapy , Pancreatic Neoplasms/metabolism , Autophagy , Treatment Outcome , Pancreatic Neoplasms
2.
Biochem Biophys Res Commun ; 525(2): 477-482, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32111355

ABSTRACT

Plasmacytoid dendritic cells (pDCs) are characterized by an exclusive expression of nucleic acid sensing Toll-like receptor 7 (TLR7) and TLR9, and production of high amounts of type I interferon (IFN) in response to TLR7/9 signaling. This function is crucial for both antiviral immunity and the pathogenesis of autoimmune diseases. An Ets family transcription factor, i.e., Spi-B (which is highly expressed in pDCs) is required for TLR7/9 signal-induced type I IFN production and can transactivate IFN-α promoter in synergy with IFN regulatory factor-7 (IRF-7). Herein, we analyzed how Spi-B contributes to the transactivation of the Ifna4 promoter. We performed deletion and/or mutational analyses of the Ifna4 promoter and an electrophoretic mobility shift assay (EMSA) and observed an Spi-B binding site in close proximity to the IRF-7 binding site. The EMSA results also showed that the binding of Spi-B to the double-stranded DNA probe potentiated the recruitment of IRF-7 to its binding site. We also observed that the association of Spi-B with transcriptional coactivator p300 was required for the Spi-B-induced synergistic enhancement of the Ifna4 promoter activity by Spi-B. These results clarify the molecular mechanism of action of Spi-B in the transcriptional activation of the Ifna4 promoter.


Subject(s)
Interferon-alpha/genetics , Proto-Oncogene Proteins c-ets/metabolism , Transcriptional Activation , Animals , E1A-Associated p300 Protein/metabolism , HEK293 Cells , Humans , Mice , Mutation , Promoter Regions, Genetic , Protein Binding , Proto-Oncogene Proteins c-ets/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...