Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Medicina (Kaunas) ; 59(1)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36676732

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an emerging infectious disease caused by severe acute respiratory syndrome 2 (SARS-CoV-2). There are many unknowns regarding the handling of long-term SARS-CoV-2 infections in immunocompromised patients. Here, we describe the lethal disease course in a SARS-CoV-2-infected patient during Bruton's tyrosine kinase inhibitor therapy. We performed whole-genome analysis using samples obtained during the course of the disease in a 63-year-old woman who was diagnosed with intraocular malignant lymphoma of the right eye in 2012. She had received treatment since the diagnosis. An autologous transplant was performed in 2020, but she experienced a worsening of the primary disease 26 days before she was diagnosed with a positive SARS-CoV-2 RT-PCR. Tirabrutinib was administered for the primary disease. A cluster of COVID-19 infections occurred in the hematological ward while the patient was hospitalized, and she became infected on day 0. During the course of the disease, she experienced repeated remission exacerbations of COVID-19 pneumonia and eventually died on day 204. SARS-CoV-2 whole-viral sequencing revealed that the patient shed the virus long-term. Viral infectivity studies confirmed infectious virus on day 189, suggesting that the patient might be still infectious. This case report describes the duration and viral genetic evaluation of a patient with malignant lymphoma who developed SARS-CoV-2 infection during Bruton's tyrosine kinase inhibitor therapy and in whom the infection persisted for over 6 months.


Subject(s)
COVID-19 , Lymphoma , Female , Humans , Middle Aged , SARS-CoV-2 , COVID-19/complications , Lymphoma/complications
2.
Exp Anim ; 58(2): 151-8, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19448338

ABSTRACT

The present study investigated whether pre-stimulation with intraperitoneal (i.p.) needling protects against development of diabetes in alloxan-treated transgenic (Tg) mice overexpressing the human Cu/Zn superoxide dismutase gene or non-Tg littermates of the FVB/N strain. Twenty minutes before the alloxan treatment (60 mg/kg) the mice were injected intraperitoneally with 0.05 ml saline while control mice received only the alloxan treatment. Hyperglycemic responses of the saline-injected mice to alloxan were significantly suppressed in the Tg mice (P<0.05). A similar reduction of response was also observed in non-Tg littermates, but the effect was less than that in the Tg mice. This protective effect on the diabetogenic action of alloxan was also demonstrated by an analysis of the number of days positive for urinary glucose, and by immunohistochemical analysis of pancreatic insulin-positive cells. A similar suppressive effect on the hyperglycemic response of alloxan was observed in the mice stimulated by i.p. needling alone. However, suppression of the hyperglycemic response was not observed in ICR mice receiving an i.p. injection. These results suggest that the diabetogenic action of alloxan can be suppressed by i.p. needling-mediated stimulation in mice that have a genetic background of the FVB/N strain. Since a slight protective effects of alloxan-induced diabetes was also observed in the Tg mice compared to FVB/N mice treated with only alloxan, this phenomenon could be more clearly seen in the Tg mice than in non-Tg littermates with an FVB/N background.


Subject(s)
Acupuncture Therapy , Diabetes Mellitus, Experimental , Insulin-Secreting Cells/pathology , Alloxan/toxicity , Animals , Blood Glucose/drug effects , Corticosterone/blood , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Experimental/prevention & control , Gene Expression/drug effects , Glycosuria/chemically induced , Heterozygote , Injections, Intraperitoneal , Insulin/metabolism , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Male , Mice , Mice, Inbred ICR , Mice, Mutant Strains , Mice, Transgenic , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...