Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Photochem Photobiol B ; 205: 111824, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32126496

ABSTRACT

Excessive exposure to UVB radiation can lead to oxidative and inflammatory damage that compromises the cutaneous integrity. The application on the skin of photochemoprotective products is considered a relevant approach for the prevention of oxidative damage. In this study the in vitro and in vivo photochemoprotective effects of antioxidant plant materials obtained from the leaves of Nectandra cuspidata Nees following UVB irradiation were evaluated. The cytoprotective effect, reactive oxygen species (ROS) production and lipid peroxidation (LPO) were assessed in L-929 fibroblasts treated with the ethyl acetate fraction (EAF) or isolated compounds (epicatechin, isovitexin and vitexin) before or after irradiation with UVB (500 mJ/cm2). EAF substantially reduced the dead of cells and inhibited the UVB-induced ROS production and LPO in both treatments, compared with the irradiated untreated fibroblasts, presenting effects similar or better than pure compounds. The in vivo photochemoprotective effects of a topical emulsion containing 1% EAF (F2) were evaluated in hairless mice exposed to UVB. F2 improved all evaluated parameters in the skin of animals, inhibited ROS production, increased antioxidant defenses by decreasing reduced glutathione (GSH) and catalase depletion, reduced the activities of metalloproteinases (MMP-2 and MMP-9) and myeloperoxidase, decreased epidermal thickness and skin edema, and inhibited the appearance of sunburn cells as well as the recruitment of neutrophils and mast cell inflammatory infiltrates. These findings show that EAF presents high photochemoprotective effects, and that a topical formulation containing it may have potential for skin care.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Fibroblasts/drug effects , Lauraceae , Plant Extracts/pharmacology , Polyphenols/pharmacology , Radiation-Protective Agents/pharmacology , Skin/drug effects , Ultraviolet Rays/adverse effects , Animals , Cell Line , Cell Survival/drug effects , Cell Survival/radiation effects , Female , Fibroblasts/radiation effects , Lipid Peroxidation/drug effects , Male , Mice, Hairless , Plant Leaves , Reactive Oxygen Species/metabolism , Skin/metabolism , Skin/pathology , Skin/radiation effects
2.
Neurotoxicology ; 77: 193-204, 2020 03.
Article in English | MEDLINE | ID: mdl-32007490

ABSTRACT

Given the well-known antioxidant and neuroprotective properties of quercetin, the aim of this work was to evaluate the effects of quercetin stabilized by microencapsulation at two doses (10 mg kg-1 and 100 mg kg-1) on the oxidative/antioxidant status, number and morphological features of ICC, nitrergic neurons and M2-like macrophages in jejunum of diabetic rats. The rats were randomly distributed into six groups: normoglycemic control (N), diabetic control (D) and either normoglycemic or diabetic groups treated with quercetin-loaded microcapsules at a dose of 10 mg kg-1 (NQ10 and DQ10, respectively) or 100 mg kg-1 (NQ100 and DQ100, respectively). After 60 days, the jejunum was collected. Whole mounts were immunostained for Ano1, nNOS and CD206, and oxidative stress levels and total antioxidant capacity of the jejunum were measured. Diabetes led to a loss of ICC and nitrergic neurons, but increased numbers of M2-like macrophages and elevated levels of oxidative stress were seen in diabetic animals. High-dose administration of quercetin (100 mg kg-1) further aggravated the diabetic condition (DQ100) but this treatment resulted in harmful effects on healthy rats (NQ100), pointing to a pro-oxidant activity. However, low-dose administration of quercetin (10 mg kg-1) gave rise to antioxidant and protective effects on ICC, nNOS, macrophages and oxidative/antioxidant status in DQ100, but NQ100 displayed infrequent negative outcomes in normoglycemic animals. Microencapsulation of the quercetin may become promising alternatives to reduce diabetes-induced oxidative stress but antioxidant therapies should be careful used under healthy status to avoid toxic effects.


Subject(s)
Antioxidants/administration & dosage , Diabetes Mellitus, Type 1/metabolism , Jejunum/drug effects , Macrophages/drug effects , Nitrergic Neurons/drug effects , Quercetin/administration & dosage , Telocytes/drug effects , Animals , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/chemically induced , Drug Compounding , Jejunum/metabolism , Macrophages/metabolism , Male , Myenteric Plexus/drug effects , Myenteric Plexus/metabolism , Nitrergic Neurons/metabolism , Oxidative Stress/drug effects , Rats, Wistar , Streptozocin/administration & dosage , Telocytes/metabolism
3.
Nat Prod Res ; 33(11): 1655-1658, 2019 Jun.
Article in English | MEDLINE | ID: mdl-29347842

ABSTRACT

The present study investigated the in vitro and in vivo antioxidant potential and phytochemical composition of Schinus terebinthifolia, which is widely used in folk medicine for various therapeutic purposes. The in vitro analyses indicated that the hydroethanolic extract (HE) had 312.50 ± 0.50 mg GAE/g of total phenols. It also presented anti-DPPH• and anti-ABTS•+ activity, reduced phosphomolybden and metal ions and blocked the bleaching of ß-carotene. The HE at concentrations of 3.0 and 2.0 µg/mL had TRAP values of 2.223 ± 0.018 and 1.894 ± 0.026 µM Trolox, respectively. The HE increased the availability of antioxidants in plasma in treated animals in vivo. HPLC-ESI-MS/MS indicated the presence of 11 phenols: cumaric acid, (+)-catechin, myricetin-3-O-glicuronide, kaempferol-3-O-glucoside, myricetin, myricitrin, quercetin, gallic acid, methyl galate, pentagalloyl glucose and ethyl galate. Thus, S. terebinthifolia has potential for the prevention or treatment of diseases that are related to oxidative stress, such as diabetes mellitus.


Subject(s)
Anacardiaceae/chemistry , Antioxidants/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Phenols/analysis , Plant Extracts/pharmacology , Animals , Antioxidants/chemistry , Chromatography, High Pressure Liquid , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Male , Oxidative Stress/drug effects , Plant Extracts/analysis , Plant Extracts/chemistry , Plant Leaves/chemistry , Rats, Wistar , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry
4.
Vet Parasitol ; 263: 5-9, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30389024

ABSTRACT

Rhipicephalus (Boophilus) microplus is one of the most important ectoparasites in cattle breeding worldwide, causing direct and indirect losses to animals and producers. Chemical acaricides are utilized in the control of cattle tick and the increase in the development of resistance by ectoparasites makes new alternative necessary. Therefore, research studies have been carried out using bioactive molecules that are quickly degraded and that reduce poisoning to appliers and non-target organisms, environmental contamination and development of resistance. Thus, this study aimed to isolate piperovatine from the roots of Piper corcovadensis, a native species to Brazil, and to evaluate the larvicidal activity against Rhipicephalus (Boophilus) microplus by larval packet test and in ex situ in an open environment. Piperovatine was isolated by classical column chromatography, and identified by 1H and 13C NMR. The lethal concentration (LC) of piperovatine that killed 50% (LC50) and 99% (LC99) of the larvae was determined by Probit analysis. The results indicated LC50 5.17 and LC99 25.41 µg/mL. LC99 was tested in ex situ in an open environment, and an efficiency of 96.63% was found, indicating that piperovatine kept the larvicidal action determined in in vitro test and in open environment. Therefore, this study shows new perspectives to develop products that can be applied in natural conditions to control this ectoparasite.


Subject(s)
Acaricides/administration & dosage , Ectoparasitic Infestations/veterinary , Larva/drug effects , Sorbic Acid/analogs & derivatives , Acaricides/chemistry , Acaricides/isolation & purification , Animals , Biological Products/administration & dosage , Cattle , Cattle Diseases/drug therapy , Cattle Diseases/epidemiology , Drug Discovery , Ectoparasitic Infestations/drug therapy , Ectoparasitic Infestations/epidemiology , Female , Piper/anatomy & histology , Piper/chemistry , Sorbic Acid/administration & dosage , Sorbic Acid/chemistry , Sorbic Acid/isolation & purification , Tick Control/methods , Tick Infestations/drug therapy , Tick Infestations/veterinary , Ticks/drug effects , Ticks/physiology
5.
Molecules ; 21(12)2016 Dec 12.
Article in English | MEDLINE | ID: mdl-27973453

ABSTRACT

Essential oils from fresh Piperaceae leaves were obtained by hydrodistillation and analyzed by gas chromatography mass spectrometry (GC-MS), and a total of 68 components were identified. Principal components analysis results showed a chemical variability between species, with sesquiterpene compounds predominating in the majority of species analyzed. The composition of the essential oil of Piper mosenii was described for the first time. The cytotoxicity of the essential oils was evaluated in peritoneal macrophages and the oils of P. rivinoides, P. arboretum, and P. aduncum exhibited the highest values, with cytotoxic concentration at 50% (CC50) > 200 µg/mL. Both P. diospyrifolium and P. aduncum displayed activity against Leishmania amazonensis, and were more selective for the parasite than for the macrophages, with a selectivity index (SI) of 2.35 and >5.52, respectively. These SI values were greater than the 1 for the standard drug pentamidine. The antileishmanial activity of the essential oils of P. diospyrifolium and P. aduncum was described for the first time. P. rivinoides, P. cernuum, and P. diospyrifolium displayed moderate activity against the Mycobacterium tuberculosis H37Rv bacillus, with a minimum inhibitory concentration (MIC) of 125 µg/mL. These results are relevant and suggests their potential for therapeutic purposes. Nevertheless, further studies are required to explain the exact mechanism of action of these essential oils.


Subject(s)
Antiprotozoal Agents/pharmacology , Antitubercular Agents/pharmacology , Leishmania/drug effects , Mycobacterium tuberculosis/drug effects , Oils, Volatile/pharmacology , Piper/chemistry , Plant Oils/pharmacology , Animals , Antiprotozoal Agents/chemistry , Antitubercular Agents/chemistry , Gas Chromatography-Mass Spectrometry , Macrophages, Peritoneal/drug effects , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Oils, Volatile/chemistry , Parasitic Sensitivity Tests , Plant Leaves/chemistry , Plant Oils/chemistry , Principal Component Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...