Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 57(25): 7396-7400, 2018 06 18.
Article in English | MEDLINE | ID: mdl-29513902

ABSTRACT

Optical coherence tomography (OCT) was used for non-invasive examination of a well-known, yet complex, painting from the studio of Leonardo da Vinci in combination with routine imaging in various bands of electromagnetic radiation. In contrast with these techniques, OCT provides depth-resolved information. Three post-processing modalities were explored: cross-sectional views, maps of scattering from given depths, and their 3D models. Some hidden alterations of the painting owing to past restorations were traced: retouching and overpainting with their positioning within varnish layers as well as indications of a former transfer to canvas.

2.
Appl Spectrosc ; 67(8): 960-72, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23876735

ABSTRACT

A detailed feasibility study on the combined use of laser-induced breakdown spectroscopy with optical coherence tomography (LIBS/OCT), aiming at a realistic depth-resolved elemental analysis of multilayer stratigraphies in paintings, is presented. Merging a high spectral resolution LIBS system with a high spatial resolution spectral OCT instrument significantly enhances the quality and accuracy of stratigraphic analysis. First, OCT mapping is employed prior to LIBS analysis in order to assist the selection of specific areas of interest on the painting surface to be examined in detail. Then, intertwined with LIBS, the OCT instrument is used as a precise profilometer for the online determination of the depth of the ablation crater formed by individual laser pulses during LIBS depth-profile analysis. This approach is novel and enables (i) the precise in-depth scaling of elemental concentration profiles, and (ii) the recognition of layer boundaries by estimating the corresponding differences in material ablation rate. Additionally, the latter is supported, within the transparency of the object, by analysis of the OCT cross-sectional views. The potential of this method is illustrated by presenting results on the detailed analysis of the structure of an historic painting on canvas performed to aid planned restoration of the artwork.

3.
Acc Chem Res ; 43(6): 826-36, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20043663

ABSTRACT

Identification of the order, thickness, composition, and possibly the origin of the paint layers forming the structure of a painting, that is, its stratigraphy, is important in confirming its attribution and history as well as planning conservation treatments. The most common method of examination is analysis of a sample collected from the art object, both visually with a microscope and instrumentally through a variety of sophisticated, modern analytical tools. Because of its invasiveness, however, sampling is less than ideally compatible with conservation ethics; it is severely restricted with respect to the amount of material extirpated from the artwork. Sampling is also rather limited in that it provides only very local information. There is, therefore, a great need for a noninvasive method with sufficient in-depth resolution for resolving the stratigraphy of works of art. Optical coherence tomography (OCT) is a noninvasive, noncontact method of optical sectioning of partially transparent objects, with micrometer-level axial resolution. The method utilizes near-infrared light of low intensity (a few milliwatts) to obtain cross-sectional images of various objects; it has been mostly used in medical diagnostics. Through the serial collection of many such images, volume information may be extracted. The application of OCT to the examination of art objects has been in development since 2003. In this Account, we present a short introduction to the technique, briefly discuss the apparatus we use, and provide a paradigm for reading OCT tomograms. Unlike the majority of papers published previously, this Account focuses on one, very specific, use of OCT. We then consider two examples of successful, practical application of the technique. At the request of a conservation studio, the characteristics of inscriptions on two oil paintings, originating from the 18th and 19th centuries, were analyzed. In the first case, it was possible to resolve some questions concerning the history of the work. From an analysis of the positions of the paint layers involved in three inscriptions in relation to other strata of the painting, the order of events in its history was resolved. It was evident that the original text had been overpainted and that the other inscriptions were added later, thus providing convincing evidence as to the painting's true date of creation. In the second example, a painting was analyzed with the aim of confirming the possibility of forgery of the artist's signature, and evidence strongly supporting this supposition is presented. These two specific examples of successful use of the technique on paintings further demonstrate how OCT may be readily adaptable to other similar tasks, such as in the fields of forensic or materials science. In a synergistic approach, in which information is obtained with a variety of noninvasive techniques, OCT is demonstrably effective and offers great potential for further development.

SELECTION OF CITATIONS
SEARCH DETAIL
...