Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Vision Res ; 219: 108403, 2024 06.
Article in English | MEDLINE | ID: mdl-38581820

ABSTRACT

Bioluminescence is a prevalent phenomenon throughout the marine realm and is often the dominant source of light in mesophotic and aphotic depth horizons. Shrimp belonging to the superfamily Oplophoroidea are mesopelagic, perform diel vertical migration, and secrete a bright burst of bioluminescent mucous when threatened. Species in the family Oplophoridae also possess cuticular light-emitting photophores presumably for camouflage via counter-illumination. Many species within the superfamily express a single visual pigment in the retina, consistent with most other large-bodied mesopelagic crustaceans studied to date. Photophore-bearing species have an expanded visual opsin repertoire and dual-sensitivity visual systems, as evidenced by transcriptomes and electroretinograms. In this study, we used immunohistochemistry to describe opsin protein localization in the retinas of four species of Oplophoroidea and non-ocular tissues of Janicella spinicauda. Our results show that Acanthephyra purpurea (Acanthephyridae) retinas possess LWS-only photoreceptors, consistent with the singular peak sensitivity previously reported. Oplophoridae retinas contain two opsin clades (LWS and MWS) consistent with dual-sensitivity. Oplophorus gracilirostris and Systellaspis debilis have LWS in the proximal rhabdom (R1-7 cells) and MWS2 localized in the distal rhabdom (R8 cell). Surprisingly, Janicella spinicauda has LWS in the proximal rhabdom (R1-7) and co-localized MWS1 and MWS2 opsin paralogs in the distal rhabdom, providing the first evidence of co-localization of opsins in a crustacean rhabdomeric R8 cell. Furthermore, opsins were found in multiple non-ocular tissues of J. spinicauda, including nerve, tendon, and photophore. These combined data demonstrate evolutionary novelty and opsin duplication within Oplophoridae, with implications for visual ecology, evolution in mesophotic environments, and a mechanistic understanding of adaptive counter-illumination using photophore bioluminescence.


Subject(s)
Opsins , Animals , Opsins/metabolism , Photoreceptor Cells, Invertebrate/physiology , Photoreceptor Cells, Invertebrate/metabolism , Retina/metabolism , Immunohistochemistry , Phylogeny
2.
Vision Res ; 217: 108367, 2024 04.
Article in English | MEDLINE | ID: mdl-38428375

ABSTRACT

The principal eyes of jumping spiders (Salticidae) integrate a dual-lens system, a tiered retinal matrix with multiple photoreceptor classes and muscular control of retinal movements to form high resolution images, extract color information, and dynamically evaluate visual scenes. While much work has been done to characterize these more complex principal anterior eyes, little work has investigated the three other pairs of simpler secondary eyes: the anterior lateral eye pair and two posterior (lateral and median) pairs of eyes. We investigated the opsin protein component of visual pigments in the eyes of three species of salticid using transcriptomics and immunohistochemistry. Based on characterization and localization of a set of three conserved opsins (Rh1 - green sensitive, Rh2 - blue sensitive, and Rh3 - ultraviolet sensitive) we have identified potential photoreceptors for blue light detection in the eyes of two out of three species: Menemerus bivittatus (Chrysillini) and Habrocestum africanum (Hasarinii). Additionally, the photoreceptor diversity of the secondary eyes exhibits more variation than previous estimates, particularly for the small, posterior median eyes previously considered vestigial in some species. In all three species investigated the lateral eyes were dominated by green-sensitive visual pigments (RH1 opsins), while the posterior median retinas were dominated by opsins forming short-wavelength sensitive visual pigments (e.g. RH2 and/or RH3/RH4). There was also variation among secondary eye types and among species in the distribution of opsins in retinal photoreceptors, particularly for the putatively blue-sensitive visual pigment formed from RH2. Our findings suggest secondary eyes have the potential for color vision, with observed differences between species likely associated with different ecologies and visual tasks.


Subject(s)
Opsins , Rod Opsins , Rod Opsins/metabolism , Retina/metabolism , Photoreceptor Cells , Retinal Pigments
3.
Sci Rep ; 10(1): 8376, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32409729

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

4.
Sci Rep ; 10(1): 4485, 2020 03 11.
Article in English | MEDLINE | ID: mdl-32161283

ABSTRACT

Extraocular photoreception, the ability to detect and respond to light outside of the eye, has not been previously described in deep-sea invertebrates. Here, we investigate photosensitivity in the bioluminescent light organs (photophores) of deep-sea shrimp, an autogenic system in which the organism possesses the substrates and enzymes to produce light. Through the integration of transcriptomics, in situ hybridization and immunohistochemistry we find evidence for the expression of opsins and phototransduction genes known to play a role in light detection in most animals. Subsequent shipboard light exposure experiments showed ultrastructural changes in the photophore similar to those seen in crustacean eyes, providing further evidence that photophores are light sensitive. In many deep-sea species, it has long been documented that photophores emit light to aid in counterillumination - a dynamic form of camouflage that requires adjusting the organ's light intensity to "hide" their silhouettes from predators below. However, it remains a mystery how animals fine-tune their photophore luminescence to match the intensity of downwelling light. Photophore photosensitivity allows us to reconsider the organ's role in counterillumination - not only in light emission but also light detection and regulation.

5.
Sci Rep ; 8(1): 4763, 2018 03 19.
Article in English | MEDLINE | ID: mdl-29555918

ABSTRACT

Variable expression of visual pigment proteins (opsins) in cone photoreceptors of the vertebrate retina is a primary determinant of vision plasticity. Switches in opsin expression or variable co-expression of opsins within differentiated cones have been documented for a few rodents and fishes, but the extent of photoreceptor types affected and potential functional significance are largely unknown. Here, we show that both single and double cones in the retina of a flatfish, the starry flounder (Platichthys stellatus), undergo visual pigment changes through opsin switches or variable opsin co-expression. As the post-metamorphic juvenile (i.e., the young asymmetric flatfish with both eyes on one side of the body) grows from ~5 g to ~196 g, some single cones and one member of unequal double cones switched from a visual pigment with maximum wavelength of absorbance, λmax, at shorter wavelengths (437 nm and 527 nm) to one with longer λmax (456 nm and 545 nm, respectively) whereas other cones had intermediate visual pigments (λmax at 445 nm or 536 nm) suggesting co-expression of two opsins. The shift toward longer wavelength absorbing visual pigments was in line with maximizing sensitivity to the restricted light spectrum at greater depths and achromatic detection of overhead targets.


Subject(s)
Flounder , Opsins/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Retinal Pigments/metabolism , Animals , Life Style
6.
J Exp Zool B Mol Dev Evol ; 328(7): 685-696, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29059507

ABSTRACT

Non-visual opsins were discovered in the early 1990s. These genes play roles in circadian rhythm in mammals, seasonal reproduction in birds, light avoidance in amphibian larvae, and neural development in fish. However, the interpretation of such studies and the success of future work are compromised by the fact that non-visual opsin repertoires have not been properly characterized in any of these lineages. Here, we show that non-visual opsins from tetrapods and ray-finned fish are distributed among 18 monophyletic subfamilies. An amphibian sequence occurs in every subfamily, whereas mammalian orthologs occur in only seven. Species in the major ray-finned fish lineages, Holostei, Osteoglossomorpha, Otomorpha, Protacanthopterygii, and Neoteleostei, have large numbers of non-visual opsins (22-32 genes) as a result of gene duplication events including, but not limited to, the teleost genome duplication (TGD). In contrast to visual opsins, where lineage-specific duplication is common, the ray-finned fish non-visual opsin repertoire appears to have stabilized shortly after the TGD event and consequently even distantly related species have repertoires of similar size and composition. Most non-visual opsins have been named without the benefit of a phylogenetic perspective and, accordingly, major revisions are proposed.


Subject(s)
Biological Evolution , Fishes/genetics , Opsins/metabolism , Animals , Gene Expression Regulation/physiology , Opsins/genetics
7.
J Comp Neurol ; 525(10): 2328-2342, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28295290

ABSTRACT

Vertebrate color vision relies on the differential expression of visual pigment proteins (opsins) in cone photoreceptors of the retina. The diversity of opsins and their retinal expression patterns appear greatest for animals that experience variable light habitats, as is the case with flatfishes. Yet, opsin repertoires and expression patterns in this group of fishes are poorly described. Here, we unveil the visual opsin expression patterns of juvenile starry flounder (Platichthys stellatus) and describe the localization of cone types, their visual pigments and opsin expression. Juvenile starry flounder express eight opsins (Rh1, Sws1, Sws2A1, Sws2A2, Sws2B, Rh2A1, Rh2A2, Lws) and possess a corresponding number of photoreceptor visual pigments, with peak absorbance ranging from 369 to 557 nm. Retinal (vitamin A1) was the only chromophore detected in the retina. Intraretinal variation in opsin abundance consisted of greater expression of both RH2, and lesser expression of SWS1 and both SWS2A, opsin transcripts in the dorsal compared to the ventral retina. Overall cone density was greater in the dorsal retina which was also characterized by a larger proportion of unequal double cones compared with the ventral retina. Together, our results suggest that large opsin repertoires serve to optimize visual function under variable light environments by differential expression of opsin subsets with retinal location.


Subject(s)
Opsins/biosynthesis , Opsins/genetics , Photic Stimulation/methods , Photophobia/genetics , Photophobia/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Animals , Flounder , Gene Expression , Photophobia/pathology , Phylogeny , Retina/cytology , Retina/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...