Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Nucl Med ; 23(6): 533-9, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19529979

ABSTRACT

OBJECTIVE: For diagnosing patients with ischemic cerebrovascular disease, non-invasive count-based method with (15)O(2) and H (2) (15) O positron-emission tomography (PET) data is widely used to measure asymmetric increases in oxygen extraction fraction (OEF). For shortening study time, we have proposed dual-tracer autoradiographic (DARG) protocol in which (15)O(2) gas and C(15)O(2) gas are sequentially administrated within short period. In this paper, we evaluated feasibility of the non-invasive count-based method with the DARG protocol. METHODS: Twenty-three patients [67.8 +/- 9.9 (mean +/- SD) years] with chronic unilateral brain infarction were examined by the use of measurements of asymmetric OEF elevation. As DARG protocol, (15)O(2) and C(15)O(2) gases were inhaled with 5-min interval and dynamic PET data were acquired for 8 min. Quantitative OEF (qOEF) image was computed with PET data and arterial input function. Ratio image of (15)O(2) and C(15)O(2) phases of PET data was computed as count-based OEF (cbOEF) image. The asymmetric indices (AI) of qOEF (qOEF-AI) and cbOEF (cbOEF-AI) were obtained from regions of interest symmetric placed on left and right sides of cerebral hemisphere. To optimize the summation time of PET data for the cbOEF image, qOEF and cbOEF images with various summation times were compared. RESULTS: Image quality of cbOEF image was better than that of qOEF image. The best correlation coefficient of 0.94 was obtained when the cbOEF image was calculated from 0 to 180 s of (15)O(2) summed image and 340 to 440 s of C(15)O(2) summed image. CONCLUSION: Using the appropriate summation time, we obtained the cbOEF image with good correlation with qOEF image, which suggests non-invasive cbOEF image can be used for evaluating the degree of misery perfusion in patients with chronic unilateral brain infarction. The count-based method with DARG protocol has a potential to dramatically reduce the examination time of (15)O PET study.


Subject(s)
Brain Infarction/diagnosis , Brain Infarction/metabolism , Oxygen Consumption , Aged , Autoradiography , Brain Infarction/diagnostic imaging , Carbon Dioxide/administration & dosage , Carbon Dioxide/metabolism , Chronic Disease , Feasibility Studies , Female , Humans , Male , Oxygen Radioisotopes/administration & dosage , Oxygen Radioisotopes/metabolism , Positron-Emission Tomography , Radioactive Tracers , Time Factors
2.
Ann Nucl Med ; 23(4): 363-71, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19360455

ABSTRACT

OBJECTIVE: Cerebral blood flow (CBF), cerebral metabolic rate of oxygen (CMRO(2)), oxygen extraction fraction (OEF), and cerebral blood volume (CBV) are quantitatively measured with PET with (15)O gases. Kudomi et al. developed a dual tracer autoradiographic (DARG) protocol that enables the duration of a PET study to be shortened by sequentially administrating (15)O(2) and C(15)O(2) gases. In this protocol, before the sequential PET scan with (15)O(2) and C(15)O(2) gases ((15)O(2)-C(15)O(2) PET scan), a PET scan with C(15)O should be preceded to obtain CBV image. C(15)O has a high affinity for red blood cells and a very slow washout rate, and residual radioactivity from C(15)O might exist during a (15)O(2)-C(15)O(2) PET scan. As the current DARG method assumes no residual C(15)O radioactivity before scanning, we performed computer simulations to evaluate the influence of the residual C(15)O radioactivity on the accuracy of measured CBF and OEF values with DARG method and also proposed a subtraction technique to minimize the error due to the residual C(15)O radioactivity. METHODS: In the simulation, normal and ischemic conditions were considered. The (15)O(2) and C(15)O(2) PET count curves with the residual C(15)O PET counts were generated by the arterial input function with the residual C(15)O radioactivity. The amounts of residual C(15)O radioactivity were varied by changing the interval between the C(15)O PET scan and (15)O(2)-C(15)O(2) PET scan, and the absolute inhaled radioactivity of the C(15)O gas. Using the simulated input functions and the PET counts, the CBF and OEF were computed by the DARG method. Furthermore, we evaluated a subtraction method that subtracts the influence of the C(15)O gas in the input function and PET counts. RESULTS: Our simulations revealed that the CBF and OEF values were underestimated by the residual C(15)O radioactivity. The magnitude of this underestimation depended on the amount of C(15)O radioactivity and the physiological conditions. This underestimation was corrected by the subtraction method. CONCLUSIONS: This study showed the influence of C(15)O radioactivity in DARG protocol, and the magnitude of the influence was affected by several factors, such as the radioactivity of C(15)O, and the physiological condition.


Subject(s)
Carbon Monoxide/chemistry , Cerebrovascular Circulation , Oxygen/metabolism , Artifacts , Autoradiography , Carbon Monoxide/metabolism , Computer Simulation , Humans , Models, Biological , Oxygen Radioisotopes/chemistry , Oxygen Radioisotopes/metabolism , Positron-Emission Tomography , Radioactive Tracers , Radioactivity , Sensitivity and Specificity , Staining and Labeling , Subtraction Technique
SELECTION OF CITATIONS
SEARCH DETAIL
...