Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Photosynth Res ; 159(1): 17-28, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38112862

ABSTRACT

Enhancing leaf photosynthetic capacity is essential for improving the yield of rice (Oryza sativa L.). Although the exploitation of natural genetic resources is considered a promising approach to enhance photosynthetic capacity, genomic factors related to the genetic diversity of leaf photosynthetic capacity have yet to be fully elucidated due to the limitation of measurement efficiency. In this study, we aimed to identify novel genomic regions for the net CO2 assimilation rate (A) by combining genome-wide association study (GWAS) and the newly developed rapid closed gas exchange system MIC-100. Using three MIC-100 systems in the field at the vegetative stage, we measured A of 168 temperate japonica rice varieties with six replicates for three years. We found that the modern varieties exhibited higher A than the landraces, while there was no significant relationship between the release year and A among the modern varieties. Our GWAS scan revealed two major peaks located on chromosomes 4 and 8, which were repeatedly detected in the different experiments and in the generalized linear modelling approach. We suggest that high-throughput gas exchange measurements combined with GWAS is a reliable approach for understanding the genetic mechanisms underlying photosynthetic diversities in crop species.


Subject(s)
Oryza , Oryza/genetics , Genome-Wide Association Study , Photosynthesis/genetics , Plant Leaves/genetics
2.
Rice (N Y) ; 16(1): 53, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38006407

ABSTRACT

Deep-water (DW) management in rice fields is a promising technique for efficient control of paddy weeds with reduced herbicide use. Maintaining a water depth of 10-20 cm for several weeks can largely suppress the weed growth, though it also inhibits rice growth because the DW management is usually initiated immediately after transplanting. Improving the DW resistance of rice during the initial growth stage is essential to avoid suppressing growth. In this study, we demonstrate a large genetic variation in the above-ground biomass (AGB) after the end of DW management among 165 temperate japonica varieties developed in Japan. Because the AGB closely correlated with plant length (PL) and tiller number (TN) at the early growth stage, we analyzed genomic regions associated with PL and TN by conducting a genome-wide association study. For PL, a major peak was detected on chromosome 3 (qPL3), which includes a gene encoding gibberellin biosynthesis, OsGA20ox1. The rice varieties with increased PL had a higher expression level of OsGA20ox1 as reported previously. For TN, a major peak was detected on chromosome 4 (qTN4), which includes NAL1 gene associated with leaf morphological development and panicle number. Although there was less difference in the expression level of NAL1 between genotypes, our findings suggest that an amino acid substitution in the exon region is responsible for the phenotypic changes. We also found that the rice varieties having alternative alleles of qPL3 and qTN4 showed significantly higher AGB than the varieties with the reference alleles. Our results suggest that OsGA20ox1 and NAL1 are promising genes for improving DW resistance in rice.

SELECTION OF CITATIONS
SEARCH DETAIL
...