Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Cancer Med ; 12(8): 9749-9759, 2023 04.
Article in English | MEDLINE | ID: mdl-36825580

ABSTRACT

OBJECTIVE: Despite the development of newly developed drugs, most multiple myeloma (MM) patients with high-risk cytogenetic abnormalities such as t(4;14) or del17p relapse at anin early stage of their clinical course. We previously reported that a natural product,komaroviquinone (KQN), isolated from the perennial semi-shrub Dracocephalum komarovi, i.e., komaroviquinone (KQN) and its derivative GTN024 induced the apoptosis of MM cells by producing reactive oxygen species (ROS), but both exhibited significant hematological toxicity. Aim of this study is to clarify anti-tumor activity, safety and pharmacokinetics of GTN057, an optimization compound of KQN in vivo. METHODS: ICR/SCID xenograft model of KMS11, a t(4;14) translocation-positive MM cell line, was used for in vivo study. Mice pharmacokinetics of GTN057 and the degradation products were analyzed by LC-MS/MS. RESULTS: Herein, our in vitro experiments revealed that GTN057 is much less toxic to normal hematopoietic cells, induced the apoptosis of both MM cell lines andpatient samples, including those with high-risk cytogenetic changes. A xenograft model of a high-risk MM cell line demonstrated that GTN057 significantly delayed the tumor growth with no apparent hematological or systemic toxicities in vivo. The pathological examination of GTN057-treated tumors in vivoshowed revealed apoptosis of MM cells and anti-angiogenesis. In addition to the production of ROS, GTN057 inhibited the downstream signaling of c-MET, a receptor tyrosine kinase a receptor forand hepatocyte growth factor (HGF) receptor. Thus, GTN057 is less toxic and is able tomay be a candidate drug for treating MM patients, via multifunctional mechanisms. We have also extensively studied the pharmacologyical analysis of GTN057. The metabolites of GTN057, (e.g.,such as GTN054), may also have anti-tumorantitumor activity. CONCLUSION: Natural products or and their derivatives can could be good sources of antineoplastic drugs even for high-risk cancer.


Subject(s)
Multiple Myeloma , Humans , Mice , Animals , Multiple Myeloma/pathology , Reactive Oxygen Species , Chromatography, Liquid , Mice, Inbred ICR , Cell Line, Tumor , Mice, SCID , Tandem Mass Spectrometry , Neoplasm Recurrence, Local , Apoptosis
2.
Biochem Biophys Res Commun ; 505(3): 787-793, 2018 11 02.
Article in English | MEDLINE | ID: mdl-30297108

ABSTRACT

New drugs have significantly improved the survival of patients with multiple myeloma (MM), but the prognosis of MM patients with high-risk cytogenetic changes such as t(4; 14), t(14; 16) or del17p remains very poor. A natural product, komaroviquinone (KQN), was originally isolated from the perennial semi-shrub Dracocephalum komarovi and has anti-protozoal activity against Trypanosoma cruzi, the organism causing Chagas' disease. Here we demonstrate that a novel KQN-derivative, GTN024, has an anti-MM effect both in vitro and in vivo. GTN024 induced the apoptosis of MM cell lines including those with high-risk cytogenetic changes. GTN024 produced reactive oxygen species (ROS) and increased phosphorylated eIF2α. The ROS production and subsequent endoplasmic reticulum (ER) stress are thought to play a key role in GTN024-induced apoptosis, as the apoptosis was completely abrogated by anti-oxidant treatment. In a mouse xenograft model, an intraperitoneal injection of 20 mg/kg of GTN024 significantly delayed tumor growth. Hematological toxicity and systemic toxicity as indicated by weight loss were not observed. These results suggest that the novel KQN-derivative GTN024 could become a candidate drug for treating high-risk MM.


Subject(s)
Apoptosis/drug effects , Diterpenes/chemistry , Endoplasmic Reticulum Stress/drug effects , Multiple Myeloma/pathology , Oxygen/metabolism , Quinones/chemistry , Animals , Cell Line, Tumor , Diterpenes/pharmacology , Eukaryotic Initiation Factor-2/metabolism , Heterografts , Humans , Mice , Multiple Myeloma/drug therapy , Phosphorylation/drug effects , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Quinones/pharmacology , Reactive Oxygen Species/metabolism
3.
Bioorg Med Chem Lett ; 27(19): 4558-4563, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28882484

ABSTRACT

Alternatives of treatments for multiple myeloma (MM) have become increasingly available with the advent of new drugs such as proteasome inhibitors, thalidomide derivatives, histone deacetylase inhibitors, and antibody drugs. However, high-risk MM cases that are refractory to novel drugs remain, and further optimization of chemotherapeutics is urgently needed. We had achieved asymmetric total synthesis of komaroviquinone, which is a natural product from the plant Dracocephalum komarovi. Similar to several leading antitumor agents that have been developed from natural compounds, we describe the antitumor activity and cytotoxicity of komaroviquinone and related compounds in bone marrow cells. Our data suggested that komaroviquinone-related agents have potential as starting compounds for anticancer drug development.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Biological Products/pharmacology , Diterpenes/pharmacology , Lamiaceae/chemistry , Multiple Myeloma/drug therapy , Quinones/pharmacology , Animals , Antineoplastic Agents, Phytogenic/chemical synthesis , Antineoplastic Agents, Phytogenic/chemistry , Biological Products/chemical synthesis , Biological Products/chemistry , Bone Marrow Cells/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Diterpenes/chemical synthesis , Diterpenes/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Mice , Molecular Structure , Multiple Myeloma/pathology , Quinones/chemical synthesis , Quinones/chemistry , Structure-Activity Relationship
4.
Proc Natl Acad Sci U S A ; 112(32): E4465-74, 2015 Aug 11.
Article in English | MEDLINE | ID: mdl-26224839

ABSTRACT

Neurodegeneration correlates with Alzheimer's disease (AD) symptoms, but the molecular identities of pathogenic amyloid ß-protein (Aß) oligomers and their targets, leading to neurodegeneration, remain unclear. Amylospheroids (ASPD) are AD patient-derived 10- to 15-nm spherical Aß oligomers that cause selective degeneration of mature neurons. Here, we show that the ASPD target is neuron-specific Na(+)/K(+)-ATPase α3 subunit (NAKα3). ASPD-binding to NAKα3 impaired NAKα3-specific activity, activated N-type voltage-gated calcium channels, and caused mitochondrial calcium dyshomeostasis, tau abnormalities, and neurodegeneration. NMR and molecular modeling studies suggested that spherical ASPD contain N-terminal-Aß-derived "thorns" responsible for target binding, which are distinct from low molecular-weight oligomers and dodecamers. The fourth extracellular loop (Ex4) region of NAKα3 encompassing Asn(879) and Trp(880) is essential for ASPD-NAKα3 interaction, because tetrapeptides mimicking this Ex4 region bound to the ASPD surface and blocked ASPD neurotoxicity. Our findings open up new possibilities for knowledge-based design of peptidomimetics that inhibit neurodegeneration in AD by blocking aberrant ASPD-NAKα3 interaction.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/toxicity , Sodium-Potassium-Exchanging ATPase/metabolism , Alzheimer Disease/pathology , Amino Acid Sequence , Animals , Calcium/metabolism , Cell Death/drug effects , Cells, Cultured , HEK293 Cells , Homeostasis/drug effects , Humans , Mass Spectrometry , Models, Biological , Models, Molecular , Molecular Imaging , Molecular Sequence Data , Molecular Weight , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Peptides/metabolism , Protein Aggregates , Protein Binding/drug effects , Rats , Signal Transduction/drug effects , Sodium/metabolism , Sodium-Potassium-Exchanging ATPase/chemistry
5.
Bioorg Med Chem Lett ; 25(15): 2967-71, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26037321

ABSTRACT

Current chemotherapy drugs for Chagas' disease are insufficient due to their limited efficacy; however, anti-trypanosomal agents have recently shown promise. As such, synthetic intermediates of komaroviquinone were evaluated for anti-trypanosomal activity. Based on the results, a series of novel quinone derivatives were screened for anti-trypanosomal activity and mammalian cytotoxicity. Several quinone derivatives displayed higher antiprotozoal activity against Trypanosoma cruzi trypomastigotes than the reference drug benznidazole, without concomitant toxicity toward the host cell.


Subject(s)
Chagas Disease/drug therapy , Diterpenes/chemistry , Diterpenes/pharmacology , Quinones/chemistry , Quinones/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , 3T3 Cells , Animals , Chagas Disease/parasitology , Diterpenes/chemical synthesis , Humans , Mice , Quinones/chemical synthesis , Trypanocidal Agents/chemical synthesis
6.
Bioorg Med Chem Lett ; 18(19): 5280-4, 2008 Oct 01.
Article in English | MEDLINE | ID: mdl-18783943

ABSTRACT

We describe here orally active and brain-penetrant cathepsin S selective inhibitors, which are virtually devoid of hERG K(+) channel affinity, yet exhibit nanomolar potency against cathepsin S and over 100-fold selectivity to cathepsin L. The new non-peptidic inhibitors are based on a 2-cyanopyrimidine scaffold bearing a spiro[3.5]non-6-yl-methyl amine at the 4-position. The brain-penetrating cathepsin S inhibitors demonstrate potential clinical utility for the treatment of multiple sclerosis and neuropathic pain.


Subject(s)
Cathepsins/antagonists & inhibitors , Ether-A-Go-Go Potassium Channels/metabolism , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Administration, Oral , Animals , Brain/drug effects , Cathepsin L , Combinatorial Chemistry Techniques , Cysteine Endopeptidases , Humans , Male , Molecular Structure , Multiple Sclerosis/drug therapy , Pain/drug therapy , Pyrimidines/blood , Pyrimidines/pharmacokinetics , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
7.
J Med Chem ; 51(17): 5459-62, 2008 Sep 11.
Article in English | MEDLINE | ID: mdl-18707091

ABSTRACT

On the basis of the pyrrolopyrimidine core structure that was previously discovered, cathepsin K inhibitors having a spiro amine at the P3 have been explored to enhance the target, bone marrow, tissue distribution. Several spiro structures were identified with improved distribution toward bone marrow. The representative inhibitor 7 of this series revealed in vivo reduction in C-terminal telopeptide of type I collagen in rats and monkeys.


Subject(s)
Bone Resorption/drug therapy , Cathepsins/antagonists & inhibitors , Cysteine Proteinase Inhibitors/chemistry , Cysteine Proteinase Inhibitors/pharmacokinetics , Animals , Bone Marrow/metabolism , Cathepsin K , Collagen Type I/metabolism , Haplorhini , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrroles/chemistry , Pyrroles/pharmacology , Rats , Spiro Compounds , Tissue Distribution
9.
Bioorg Med Chem Lett ; 18(16): 4642-6, 2008 Aug 15.
Article in English | MEDLINE | ID: mdl-18662880

ABSTRACT

We describe here a novel 4-amino-2-cyanopyrimidine scaffold for nonpeptidomimetic cathepsin S selective inhibitors. Some of the synthesized compounds have sub-nanomolar potency and high selectivity toward cathepsin S along with promising pharmacokinetic and physicochemical properties. The key structural features of the inhibitors consist of a combination of a spiro[2.5]oct-6-ylmethylamine P2 group at the 4-position, a small or polar P3 group at the 5-position and/or a polar group at the 6-position of the pyrimidine.


Subject(s)
Cathepsins/antagonists & inhibitors , Chemistry, Pharmaceutical/methods , Cysteine Proteinase Inhibitors/chemical synthesis , Nitriles/chemical synthesis , Peptides/chemistry , Pyrimidines/chemistry , Pyrimidines/chemical synthesis , Animals , Cysteine Proteinase Inhibitors/pharmacology , Drug Design , Humans , Inhibitory Concentration 50 , Male , Molecular Conformation , Nitriles/pharmacology , Pyrimidines/pharmacology , Rats , Rats, Sprague-Dawley , Recombinant Proteins/chemistry , Structure-Activity Relationship
10.
Bioorg Med Chem Lett ; 18(14): 3959-62, 2008 Jul 15.
Article in English | MEDLINE | ID: mdl-18572405

ABSTRACT

Nonpeptidic, selective, and potent cathepsin S inhibitors were derived from an in-house pyrrolopyrimidine cathepsin K inhibitor by modification of the P2 and P3 moieties. The pyrrolopyrimidine-based inhibitors show nanomolar inhibition of cathepsin S with over 100-fold selectivity against other cysteine proteases, including cathepsin K and L. Some of the inhibitors showed cellular activities in mouse splenocytes as well as oral bioavailabilities in rats.


Subject(s)
Cathepsins/antagonists & inhibitors , Cysteine Endopeptidases/chemical synthesis , Cysteine Proteinase Inhibitors/chemical synthesis , Biological Availability , Cathepsin K , Cathepsin L , Cathepsins/chemistry , Chemistry, Pharmaceutical , Cysteine Endopeptidases/chemistry , Cysteine Proteinase Inhibitors/pharmacology , Drug Design , Humans , Inhibitory Concentration 50 , Models, Chemical , Molecular Conformation , Molecular Structure , Pyridines/chemistry , Structure-Activity Relationship
11.
Bioorg Med Chem Lett ; 18(8): 2599-603, 2008 Apr 15.
Article in English | MEDLINE | ID: mdl-18375120

ABSTRACT

Cyano pyrimidine acetylene and cyano pyrimidine t-amine, which belong to a new chemical class, were prepared and tested for inhibitory activities against cathepsin K and the highly homologous cathepsins L and S. The use of novel chemotypes in the development of cathepsin K inhibitors has been demonstrated by derivatives of compounds 1 and 8.


Subject(s)
Cathepsins/antagonists & inhibitors , Cathepsins/metabolism , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Binding Sites , Cathepsin K , Cathepsin L , Cathepsins/chemistry , Cysteine Endopeptidases/metabolism , Drug Design , Enzyme Inhibitors/chemistry , Humans , Models, Molecular , Molecular Structure , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...