Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Gels ; 9(3)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36975628

ABSTRACT

It is expected that ionic liquids will be used in the future as electrolytes for electric double layer capacitors, but currently microencapsulation with a conductive or porous shell is required for their fabrication. Here, we succeeded in fabricating a transparently gelled ionic liquid trapped in hemispherical silicone microcup structures just by observing with a scanning electron microscope (SEM), which allows the microencapsulation process to be eliminated and electrical contacts to be formed directly. To see the gelation, small amounts of ionic liquid were exposed to the SEM electron beam on flat aluminum, silicon, silica glass, and silicone rubber. The ionic liquid gelled on all the plates, and a color change to brown was observed on all the plates except for silicone rubber. This change might be caused by reflected and/or secondary electrons from the plates producing isolated carbon. Silicone rubber could remove the isolated carbon due to the large amount of oxygen inside it. Fourier transform infrared spectroscopy revealed that the gelled ionic liquid included a large amount of the original ionic liquid. Moreover, the transparent, flat gelled ionic liquid could also be made into three-layer structures on silicone rubber. Consequently, the present transparent gelation is suitable for silicone rubber-based microdevices.

3.
Sci Rep ; 12(1): 18264, 2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36309553

ABSTRACT

Micro-energy storage, which is convenient for combination with energy harvesting, is known to be realized by microencapsulation with various shell materials, its application is limited to land. Here, we succeeded in fabricating a silicone microcapsule array encapsulating an ionic liquid electrolyte that can store minute power in NaCl solution as well as a minute power generation method. The ArF excimer laser-irradiated silicone rubber underneath silica microspheres was photochemically and periodically swelled by the photodissociation of silicone. Accompanied by the microswellings, the lower molecular weight silicones generated were ejected along a curvature of each the microsphere to enclose the microspheres. After the chemical etching, the silicone microcapsule arrays became hollow. Moreover, each the hollow silicone microcapsule could entrap an ionic liquid in a vacuum. In addition, the silicone microcapsules before and after the encapsulating ionic liquid showed a superhydrophobic or near-superhydrophobic property. As a result, the silicone microcapsule arrays could be confined in a uniform air gap of electrically insulated region in NaCl solution. This means that each the silicone microcapsule encapsulating ionic liquid as electrolytes enables to function as an electric double layer capacitor for micro-power storage, aiming to connect with Internet of Things devices that work under seawater.

SELECTION OF CITATIONS
SEARCH DETAIL
...