Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Biomed Res Int ; 2024: 8864513, 2024.
Article in English | MEDLINE | ID: mdl-38304347

ABSTRACT

Aim: The present study evaluated the therapeutic effects of luteolin in alleviating pulpitis of dental pulp- (DP-) derived microvesicles (MVs) via the inhibition of protein kinase R- (PKR-) mediated inflammation. Methodology. Proteomic analysis of immortalized human dental pulp (DP-1) cell-derived MVs was performed to identify PKR-associated molecules. The effect of luteolin on PKR phosphorylation in DP-1 cells and the expression of tumor necrosis factor-α (TNF-α) in THP-1 macrophage-like cells were validated. The effect of luteolin on cell proliferation was compared with that of chemical PKR inhibitors (C16 and 2-AP) and the unique commercially available sedative guaiacol-parachlorophenol. In the dog experimental pulpitis model, the pulps were treated with (1) saline, (2) guaiacol-parachlorophenol, and (3) luteolin. Sixteen teeth from four dogs were extracted, and the pulp tissues were analyzed using hematoxylin and eosin staining. Immunohistochemical staining was performed to analyze the expression of phosphorylated PKR (pPKR), myeloperoxidase (MPO), and CD68. Experimental endodontic-periodontal complex lesions were established in mouse molar through a silk ligature and simultaneous MV injection. MVs were prepared from DP-1 cells with or without pretreatment with 2-AP or luteolin. A three-dimensional microcomputed tomography analysis was performed on day 7 (n = 6). Periodontal bone resorption volumes were calculated for each group (nonligated-ligated), and the ratio of bone volume to tissue volume was measured. Results: Proteomic analysis identified an endogenous PKR activator, and a protein activator of interferon-induced PKR, also known as PACT, was included in MVs. Luteolin inhibited the expressions of pPKR in DP-1 cells and TNF-α in THP-1 cells with the lowest suppression of cell proliferation. In the dog model of experimental pulpitis, luteolin treatment suppressed the expression of pPKR-, MPO-, and CD68-positive cells in pulp tissues, whereas guaiacol-parachlorophenol treatment caused coagulative necrosis and disruption. In a mouse model of endodontic-periodontal complex lesions, luteolin treatment significantly decreased MV-induced alveolar bone resorption. Conclusion: Luteolin is an effective and safe compound that inhibits PKR activation in DP-derived MVs, enabling pulp preservation.


Subject(s)
Alveolar Bone Loss , Chlorophenols , Pulpitis , Dogs , Humans , Mice , Animals , Luteolin/pharmacology , Tumor Necrosis Factor-alpha/pharmacology , X-Ray Microtomography , Proteomics , Inflammation/metabolism , Guaiacol , Dental Pulp/metabolism
2.
Front Physiol ; 14: 1298813, 2023.
Article in English | MEDLINE | ID: mdl-38156070

ABSTRACT

Drug-induced gingival overgrowth (DIGO), induced by certain immunosuppressive drugs, antihypertensive agents, and antiepileptic drugs, may contribute to the formation of deeper periodontal pockets and intractableness in periodontitis. To date, multiple factors such as enhanced matrix production, inflammation, and reduced matrix degradation might be involved in the pathogenesis of DIGO. We have previously reported that SPOCK-1, a heparan sulfate proteoglycan, could affect gingival thickening by promoting epithelial-to-mesenchymal transition (EMT) in gingival keratinocytes. However, few studies have investigated whether a combination of these factors enhances the DIGO phenotype in animal models. Therefore, we investigated whether SPOCK-1, periodontal inflammation, and cyclosporin-A (CsA) could cooperatively promote gingival overgrowth. We first confirmed that Spock-1 overexpressing (Spock1-Tg) mice showed significantly thicker gingiva and greater alveolar bone loss than WT mice in response to ligature-induced experimental periodontitis. DIGO was induced by the combination of CsA administration and experimental periodontitis was significantly enhanced in Spock1-Tg mice compared to that in WT mice. Ligature-induced alveolar bone loss in CsA-treated Spock1-Tg mice was also significantly greater than that in CsA-treated WT mice, while being accompanied by an increase in Rankl and Col1a1 levels and a reduction in matrix metalloprotease expression. Lastly, SPOCK-1 promoted RANKL-induced osteoclast differentiation in both human peripheral blood mononuclear cells and murine macrophages, while peritoneal macrophages from Spock1-Tg mice showed less TNFα and IL-1ß secretion than WT mice in response to Escherichia coli lipopolysaccharide. These results suggest that EMT, periodontal inflammation, and subsequent enhanced collagen production and reduced proteinase production contribute to CsA-induced DIGO pathogenesis.

3.
J Atheroscler Thromb ; 30(11): 1517-1524, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37648470

ABSTRACT

Periodontitis, a major inflammatory disease of the oral cavity that can cause low-grade systemic inflammation, has been suggested to influence the development of comorbidities. Multiple systemic inflammatory mechanisms are common in the development of periodontal disease and atherosclerosis. Observational studies conducted worldwide have reported that periodontal disease may independently influence the progression of atherosclerotic disease. However, there is still insufficient evidence to demonstrate the causal relationship. This review describes the association between periodontal disease and arteriosclerosis-related diseases with the latest findings.


Subject(s)
Atherosclerosis , Periodontal Diseases , Periodontitis , Humans , Periodontal Diseases/complications , Periodontitis/complications , Atherosclerosis/complications , Inflammation/complications , Risk Factors
4.
Arch Biochem Biophys ; 734: 109501, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36592647

ABSTRACT

A well-tuned inflammatory response is crucial for an effective immune process. Nuclear factor-kappa B (NF-κB) is a key mediator of inflammatory and innate immunity responses, and its dysregulation is closely associated with immune-related diseases. MicroRNAs (miRNAs) are important inflammation modulators. However, miRNA-regulated mechanisms that implicate NF-κB activity are not fully understood. This study aimed to identify a potential miRNA that could modulate the dysregulated NF-κB signaling during inflammation. We identified miR-582-5p that was significantly downregulated in inflamed murine adipose tissues and RAW264.7 cells. S-phase kinase-associated protein 1 (SKP1), a core component of an E3 ubiquitin ligase that regulates the NF-κB pathway, was proposed as a biological target of miR-582-5p by using TargetScan. The binding of miR-582-5p to a 3'-untranslated region site on Skp1 was confirmed using a dual-luciferase reporter assay; in addition, transfection with a miR-582-5p mimic suppressed SKP1 expression in RAW264.7 cells. Importantly, exogenous miR-582-5p attenuated the production of pro-inflammatory cytokines such as tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6 through suppressing the degradation of the NF-κB inhibitor alpha, followed by the nuclear translocation of NF-κB. Therefore, exogenously applied miR-582-5p can attenuate the NF-κB signaling pathway via targeting Skp1; this provides a prospective therapeutic strategy for treating inflammatory and immune diseases.


Subject(s)
MicroRNAs , NF-kappa B , Animals , Mice , Inflammation/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , NF-kappa B/metabolism , S-Phase Kinase-Associated Proteins/genetics , S-Phase Kinase-Associated Proteins/metabolism , Signal Transduction
5.
Front Cell Dev Biol ; 10: 1061216, 2022.
Article in English | MEDLINE | ID: mdl-36531939

ABSTRACT

The expression profiles of exosomal microRNAs (miRNAs) are regulated by the microenvironment, and appropriate priming with mesenchymal stem cells (MSCs) is one of the strategies to enhance the paracrine potency of MSCs. Our previous work demonstrated that exosomes from tumor necrosis factor (TNF)-α-primed human gingiva-derived MSCs (GMSCs) could be a therapeutic tool against periodontitis, and that TNFα-inducible exosomal miR-1260b is essential for the inhibition of alveolar bone loss. However, the precise molecular mechanism underlying miR-1260b-mediated inhibition of osteoclastogenesis is not yet fully understood. Here, we found that the activating transcription factor (ATF)-6ß, a novel miR-1260b-targeting gene, is critical for the regulation of osteoclastogenesis under endoplasmic reticulum (ER) stress. An experimental periodontal mouse model demonstrated that induction of ER stress was accompanied by enhanced ATF6ß expression, and local administration of miR-1260b and ATF6ß siRNA using polyethylenimine nanoparticles (PEI-NPs) significantly suppressed the periodontal bone resorption. In periodontal ligament (PDL) cells, the ER stress inducer, tunicamycin, enhanced the expression of the receptor activator of NF-κB ligand (RANKL), while miR-1260b-mediated downregulation of ATF6ß caused RANKL inhibition. Furthermore, the secretome from miR-1260b/ATF6ß-axis-activated PDL cells inhibited osteoclastogenesis in human CD14+ peripheral blood-derived monocytes. These results indicate that the miR-1260b/ATF6ß axis mediates the regulation of ER stress, which may be used as a novel therapeutic strategy to treat periodontal disease.

6.
Sci Rep ; 12(1): 13344, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35922474

ABSTRACT

Immunoregulatory properties of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) are promising. Gingival tissue-derived MSCs (GMSCs) have unique immunoregulatory capacity and secrete large amounts of EVs. Recent findings suggest that priming MSCs with inflammatory stimuli is an effective strategy for cell-free therapy. However, the precise mechanism by which the contents of EVs are customized has not been fully elucidated. Here, we show that EVs derived from GMSCs primed with a combination of two pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α) and interferon-α (IFN-α), synergistically promote anti-inflammatory M2 macrophage polarization by increasing the expression of cluster of differentiation 73 (CD73) and CD5 molecule-like (CD5L). Expression of CD73 by TNF-α/IFN-α stimulation was transcriptionally upregulated by the activation of mammalian target of rapamycin signaling and nuclear translocation of hypoxia-inducible factor 1α in GMSCs. TNF-α/IFN-α treatment also significantly increased the expression of CD5L mRNA via the transcription factor DNA-binding protein inhibitor ID3 and liver X receptor. Interestingly, exosomal CD5L is a prerequisite for the synergistic effect of EVs-mediated M2 macrophage polarization. These results indicate that combined pre-licensing with TNF-α and IFN-α in GMSCs is ideal for enhancing the anti-inflammatory function of EVs, which contributes to the establishment of a therapeutic tool.


Subject(s)
Extracellular Vesicles , Tumor Necrosis Factor-alpha , Extracellular Vesicles/metabolism , Interferon-alpha/metabolism , Interferon-alpha/pharmacology , Macrophage Activation , Macrophages/metabolism , Tumor Necrosis Factor-alpha/metabolism
7.
Acta Diabetol ; 59(10): 1275-1286, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35829914

ABSTRACT

AIMS: Pancreatic ß-cell apoptosis may be involved in the onset and progression of type 2 diabetes mellitus, although its mechanism remains unclear. We previously demonstrated that macrophage-derived interferon (IFN) ß induced X-linked inhibitor of apoptosis-associated factor 1 (XAF1) expression in ß-cells and accelerated ß-cell apoptosis in vitro. Here, we explored the effects of XAF1 on ß-cell function and progression of diabetes in vivo. METHODS: Pancreatic ß-cell-selective XAF1 overexpressing (Xaf1 Tg) mice were generated. Xaf1 Tg mice and their wild-type (WT) littermates were fed either a normal diet or a 40% or 60% high-fat diet (HFD). The effects of ß-cell XAF1 on ß-cell apoptosis and exacerbation of diabetes were investigated. RESULTS: Palmitic acid induced IFNß expression in macrophages, and HFD intake promoted macrophage infiltration in pancreatic islets, both of which cooperatively upregulated XAF1 expression in mouse islets. Furthermore, HFD-fed Xaf1 Tg mice demonstrated increased ß-cell apoptosis, lowered insulin expression, and impaired glucose tolerance compared with WT mice fed the same diet. These effects were more pronounced in the 60%HFD group than in the 40%HFD group. CONCLUSIONS: Pancreatic ß-cell XAF1 expression was enhanced via HFD-induced, macrophage-derived IFNß, which promoted ß-cell apoptosis and led to a reduction in insulin secretion and progression of diabetes. To our knowledge, this is the first report to demonstrate an association between pancreatic ß-cell XAF1 overexpression and exacerbation of diabetes, thus providing insight into the mechanism of ß-cell mass reduction in diabetes.


Subject(s)
Adaptor Proteins, Signal Transducing , Apoptosis Regulatory Proteins , Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Islets of Langerhans , Adaptor Proteins, Signal Transducing/genetics , Animals , Apoptosis/genetics , Apoptosis Regulatory Proteins/genetics , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat/adverse effects , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Mice , Mice, Inbred C57BL
8.
Case Rep Dermatol Med ; 2021: 5548760, 2021.
Article in English | MEDLINE | ID: mdl-34712500

ABSTRACT

Palmoplantar pustulosis (PPP) is a recurrent pustular dermatosis located on the palms and soles. Focal infection may exacerbate the symptoms of PPP, but the etiology is not fully clear. A 56-year-old woman with PPP was diagnosed with severe chronic periodontitis. Initial treatment for periodontitis combined with topical application of antibiotics and surgical treatment was performed. In this case, attention was paid to the relevance of systemic inflammation caused by periodontitis with the clinical symptoms of PPP. With periodontal treatment, the symptoms of PPP and periodontitis, high-sensitivity C-reactive protein (hs-CRP) level, and periodontal inflamed surface area (PISA) improved. This case highlights the importance of comprehensive dental examinations, including those for oral infections, such as periodontitis and other unrecognized sources of infection, and dental treatment in the overall management of PPP.

9.
Curr Oral Health Rep ; 8(4): 76-83, 2021.
Article in English | MEDLINE | ID: mdl-34611505

ABSTRACT

PURPOSE OF REVIEW: Obesity is a trigger for multiple diseases such as diabetes mellitus, hypertension, and cardiovascular diseases. Epidemiological studies have shown that obesity may be a risk factor for periodontal disease. Recently, there have been reports of presumed mechanisms of the associations between periodontitis and lipid metabolism or thermogenesis. This review aims to discuss the link between periodontal disease and energy regulatory function based on recent findings. RECENT FINDINGS: It has been demonstrated that activation of the C-C motif chemokine ligand/C-C chemokine receptor 7 pathway in adipose tissue induces inflammation and impairment of lipid metabolism and energy regulation in mice. Porphyromonas gingivalis administration has been shown to induce further weight gain and increased adipose tissue in diet-induced obese mice. Additionally, it has been reported that Porphyromonas gingivalis-induced endotoxemia potentially affect obesity by altering endocrine functions in brown adipose tissue in mice. Several cohort studies have shown that obesity is associated with tooth loss 5 years later, and periodontal conditions of obese individuals are significantly worse 2 and 6 months after the treatment compared with those of non-obese individuals. It has also been reported that body mass index is positively associated with the periodontal inflamed surface area index, a measure of periodontal inflammation. These results suggest that not only the enhancement of inflammation due to obesity but also the activation of inflammatory signaling may affect energy regulation. SUMMARY: Loss of adipose tissue homeostasis induces increase and activation of immune cells in adipose tissue, leading to impaired immune function in obesity. Various cytokines and chemokines are secreted from obese adipose tissue and promote inflammatory signaling. Some of these signaling pathways have been suggested to affect energy regulation. The combination of obesity and periodontitis amplifies inflammation to levels that affect the whole body through the adipose tissue. Obesity, in turn, accelerates the exacerbation of periodontitis.

10.
Article in English | MEDLINE | ID: mdl-34031140

ABSTRACT

INTRODUCTION: Enlarged adipose tissue is characterized by infiltration of activated immune cells and increased expression of chemokines recruiting these cells including C-C motif ligand 19 (CCL19), although the role of adipose CCL19 is still inconclusive. RESEARCH DESIGN AND METHODS: Adipocyte-specific Ccl19 knock-in (KI) mice were generated, and the mice were fed either a normal diet or 40% or 60% fat diet (FD) to investigate the effects of CCL19 on the induction of inflammation and lipid metabolism. RESULTS: Ccl19KI mice exhibited increased inflammatory signs in adipose tissue and enlarged subcutaneous white and brown adipose tissue than those of wild-type (WT) mice. The adipose tissue of Ccl19KI mice was characterized by increased extracellular signal-regulated kinase 1/2 and decreased AMP-activated protein kinase α phosphorylation. The protein expression of peroxisome proliferator-activated receptor γ coactivator 1α and uncoupling protein 1 was significantly reduced in brown adipose tissue of Ccl19KI mice compared with that in WT mice. The most remarkable changes between genotypes were observed in mice fed a 40% FD. CONCLUSION: A 40% FD enhanced the effects of CCL19 overexpression, and these mice could be a suitable model to study metabolic disorders in overweight Asians.


Subject(s)
Insulin Resistance , Adipose Tissue, White , Animals , Insulin Resistance/genetics , Ligands , Mice , Obesity , Weight Gain
11.
J Cell Biochem ; 122(7): 716-730, 2021 07.
Article in English | MEDLINE | ID: mdl-33529434

ABSTRACT

Amelogenin directly binds to glucose-regulated protein 78 (Grp78). Cell migration activity is expected to increase when human periodontal ligament cells (hPDLCs) overexpressing Grp78 are treated with amelogenin. Geranylgeranylacetone (GGA) is a drug that induces the expression of heat shock protein and is routinely used to treat gastric ulcers. Here, we investigated the changes in the properties and behavior of hPDLCs in response to treatment with GGA and the synergistic effects of amelogenin stimulation in hPDLCs pretreated with GGA for the establishment of a novel periodontal tissue regenerative therapy. We observed that GGA treatment increased Grp78 protein expression in hPDLCs and enhanced cell migration. Microarray analysis demonstrated that increased Grp78 expression triggered the production of angiopoietin-like 4 and amphiregulin, which are involved in the enhancement of angiogenesis and subsequent wound healing via the activation of hypoxia-inducible factor 1α and peroxisome proliferator-activated receptors as well as the phosphorylation of cAMP response element-binding protein and protein kinase A. Moreover, the addition of recombinant murine amelogenin (rM180) further accelerated hPDLC migration and tube formation of human umbilical vein endothelial cells due to the upregulation of interleukin-8 (IL-8), monocyte chemotactic protein 1, and IL-6, which are also known as angiogenesis-inducing factors. These findings suggest that the application of GGA to gingival tissue and alveolar bone damaged by periodontal disease would facilitate the wound healing process by inducing periodontal ligament cells to migrate to the root surface and release cytokines involved in tissue repair. Additionally, supplementation with amelogenin synergistically enhanced the migratory capacity of these cells while actively promoting angiogenesis. Therefore, the combined application of GGA and amelogenin may establish a suitable environment for periodontal wound healing and further drive the development of novel therapeutics for periodontal tissue regeneration.


Subject(s)
Amelogenin/pharmacology , Diterpenes/pharmacology , Neovascularization, Pathologic , Periodontal Ligament/blood supply , Wound Healing , Anti-Ulcer Agents/pharmacology , Drug Therapy, Combination , Endoplasmic Reticulum Chaperone BiP , Humans , Periodontal Ligament/metabolism , Periodontal Ligament/pathology
12.
Biochem Biophys Res Commun ; 533(4): 1076-1082, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33012508

ABSTRACT

SPOCK1 is a calcium-binding matricellular proteoglycan that has been extensively studied in several cancer cells. Previously, we generated a mouse line overexpressing SPOCK1 (Spock1-Tg mouse) and showed that SPOCK1 might play an important role in drug-induced gingival overgrowth, indicating that it possesses physiological functions in non-cancer diseases as well. Although SPOCK1 was reported to be secreted from human adipocytes, its role in adipocyte physiology has not been addressed yet. In this study, SPOCK1 protein expression was confirmed in pancreas, adipose tissues, spleen, and liver of normal diet (ND)-fed mice. Interestingly, SPOCK1 was up-regulated in the pancreas and adipose tissues of the high-fat diet (HFD)-fed mice. Spock1-Tg mice fed with ND showed increased maturation in epididymal and inguinal adipose tissues. In addition, Spock1 overexpression strongly decreased expression of UCP-1 in adipose tissues, suggesting that SPOCK1 might regulate thermogenic function through suppression of UCP-1 expression. Finally, exogenous SPOCK1 treatment directly accelerated the differentiation of 3T3-L1 adipocytes, accompanied by the up-regulation of adipocyte differentiation-related gene expression. In conclusion, we demonstrated for the first time that SPOCK1 induced adipocyte differentiation via the up-regulation of adipogenesis-related genes.


Subject(s)
Adipocytes/metabolism , Adipogenesis/genetics , Adipose Tissue/cytology , Gene Expression Regulation/genetics , Proteoglycans/metabolism , 3T3-L1 Cells , Adipose Tissue/metabolism , Animals , Diet, High-Fat , Immunohistochemistry , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Pancreas/metabolism , Proteoglycans/genetics , Recombinant Proteins , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism , Up-Regulation
13.
Sci Rep ; 10(1): 9785, 2020 06 17.
Article in English | MEDLINE | ID: mdl-32555336

ABSTRACT

Few studies have investigated the role of extracellular-matrix proteoglycans in the pathogenesis of drug-induced gingival overgrowth (DIGO). SPOCK1 is an extracellular proteoglycan that induces epithelial to mesenchymal transition (EMT) in several cancer cell lines and exhibits protease-inhibitory activity. However, the role of SPOCK1 in non-cancerous diseases such as DIGO has not been well-addressed. We demonstrated that the expression of SPOCK1, TGF-ß1, and MMP-9 in calcium channel blocker-induced gingival overgrowth is higher than that in non-overgrowth tissues. Transgenic mice overexpressing Spock1 developed obvious gingival-overgrowth and fibrosis phenotypes, and positively correlated with EMT-like changes. Furthermore, in vitro data indicated a tri-directional interaction between SPOCK1, TGF-ß1, and MMP-9 that led to gingival overgrowth. Our study shows that SPOCK1 up-regulation in a noncancerous disease and SPOCK1-induced EMT in gingival overgrowth occurs via cooperation and crosstalk between several potential signaling pathways. Therefore, SPOCK1 is a novel therapeutic target for gingival overgrowth and its expression is a potential risk of EMT induction in cancerous lesions.


Subject(s)
Epithelial-Mesenchymal Transition , Gingival Diseases/chemically induced , Proteoglycans/physiology , Animals , Calcium Channel Blockers/pharmacology , Cell Line, Tumor , Humans , Male , Matrix Metalloproteinase 9/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Nifedipine/pharmacology , Proteoglycans/genetics , Transforming Growth Factor beta1/metabolism , Up-Regulation
14.
Biochem Biophys Rep ; 22: 100757, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32346618

ABSTRACT

MicroRNA (miRNA) plays an important role in diverse cellular biological processes such as inflammatory response, differentiation and proliferation, and carcinogenesis. miR-146a has been suggested as a negative regulator of the inflammatory reaction. Although, it has been reported as expressed in inflamed adipose and periodontal tissues, however, miR-146a's inhibitory effects against inflammatory response in both the tissues, are not well understood. Therefore, in this study, the inhibitory effects of miR-146a on both adipose and periodontal inflammation, was investigated. In vitro study has revealed that miR-146a transfection into either adipocytes or gingival fibroblasts, has resulted in a reduced cytokine gene expression, observed on co-culturing the cells with macrophages in the presence of lipopolysaccharides (LPS), in comparison to the control miRNA transfected. Similarly, miR-146a transfection into macrophages resulted in a reduced expression of TNF-α gene and protein in response to LPS stimulation. In vivo study revealed that a continuous intravenous miR-146a administration into mice via tail vein, protected the mice from developing high-fat diet-induced obesity and the inflammatory cytokine gene expression was down-regulated in both adipose and periodontal tissues. miR-146a appeared to be induced by macrophage-derived inflammatory signals such as TNF-α by negative feed-back mechanism, and it suppressed inflammatory reaction in both adipose and periodontal tissues. Therefore, miR-146a could be suggested as a potential therapeutic molecule and as a common inflammatory regulator for both obesity-induced diabetes and related periodontal diseases.

15.
Diabetol Metab Syndr ; 11: 57, 2019.
Article in English | MEDLINE | ID: mdl-31367234

ABSTRACT

BACKGROUND: Recently, clinical studies have shown the protective effects of sodium glucose co-transporter2 (SGLT2) inhibitors against progression of diabetic nephropathy, but the underlying molecular mechanisms remain unclear. METHODS: Diabetic mice were prepared by injecting nicotinamide and streptozotocin, followed by high-sucrose diet feeding (NA/STZ/Suc mice). The SGLT2 inhibitor canagliflozin was administered as a 0.03% (w/w) mixture in the diet for 4 weeks. Then, various parameters and effects of canagliflozin on diabetic nephropathy were investigated. RESULTS: Canagliflozin administration to NA/STZ/Suc mice normalized hyperglycemia as well as elevated renal mRNA of collagen 1a1, 1a2, CTGF, TNFα and MCP-1. Microscopic observation revealed reduced fibrotic deposition in the kidneys of canagliflozin-treated NA/STZ/Suc mice. Interestingly, the protein level of Pin1, reportedly involved in the inflammation and fibrosis affecting several tissues, was markedly increased in the NA/STZ/Suc mouse kidney, but this was normalized with canagliflozin treatment. The cells showing increased Pin1 expression in the kidney were mainly mesangial cells, along with podocytes, based on immunohistochemical analysis. Furthermore, it was revealed that canagliflozin induced AMP-activated kinase (AMPK) activation concentration-dependently in CRL1927 mesangial as well as THP-1 macrophage cell lines. AMPK activation was speculated to suppress mesangial cell proliferation and exert anti-inflammatory effects in hematopoietic cells. CONCLUSION: Therefore, we can reasonably suggest that normalized Pin1 expression and AMPK activation contribute to the molecular mechanisms underlying SGLT2 inhibitor-induced suppression of diabetic nephropathy, possibly at least in part by reducing inflammation and fibrotic change.

16.
Nutr Metab (Lond) ; 16: 43, 2019.
Article in English | MEDLINE | ID: mdl-31312229

ABSTRACT

BACKGROUND: The chemokine receptor CCR7, expressed on various immune cells, is associated with cell migration and lympho-node homing. Mice lacking Ccr7 are protected from diet-induced obesity and subsequent insulin resistance. We evaluated the mechanism underlying these protective effects from the standpoint of energy expenditure. METHODS: Wild-type and Ccr7 null mice were fed a high-fat diet, and the regulation of energy metabolism and energy metabolism-related molecules, e.g., Ucp1, Cidea, and Pgc1α, were evaluated. RESULTS: Food intake did not differ between groups. O2 consumption and CO2 production were higher in Ccr7 null mice than in wild-type mice, despite a similar respiratory quotient and glucose and lipid utilization, suggesting that energy expenditure increased in Ccr7 null mice via enhanced metabolism. In white adipose tissues of Ccr7 null mice, Prdm16, Cd137, Tmem26, Th, and Tbx1 expression increased. Similarly, in brown adipose tissues of Ccr7 null mice, Dio2, Pgc1α, Cidea, Sirt1, and Adiponectin expression increased. In both white and brown adipose tissues, Ucp1 gene and protein expression levels were higher in null mice than in wild-type mice. CONCLUSIONS: In Ccr7 null mice, browning of white adipocytes as well as the activation of brown adipocytes cause enhanced energy metabolism, resulting in protection against diet-induced obesity.

17.
Horm Metab Res ; 50(2): 160-167, 2018 02.
Article in English | MEDLINE | ID: mdl-29132171

ABSTRACT

Metabolic endotoxemia has been implicated in the pathogenesis of type 2 diabetes. In addition to adipose tissue inflammation, inflammatory cell infiltration is also observed in islets, although its effect on islets is largely unknown. We hypothesized that macrophage infiltration into islets leads to impairment of α or ß cell function, which ultimately act to exacerbate the pathophysiology of diabetes. Gene expression in a murine α cell line, αTC1, and ß cell line, ßTC6, was investigated by DNA microarray after co-culturing the cells with a murine macrophage cell line, RAW 264.7, in the presence or absence of bacterial endotoxin. Among the genes showing highly upregulated expression, genes specifically upregulated only in ß cells were evaluated to determine the roles of the gene products on the cellular function of ß cells. In both α and ß cells, expression of type I interferon-responsive genes was highly upregulated upon endotoxin stimulation. Among these genes, expression of the X-linked inhibitor of apoptosis (Xiap)-associated factor 1 (Xaf1) gene, which is associated with the induction of apoptosis, was specifically enhanced in ß cells by endotoxin stimulation. This upregulation appeared to be mediated by macrophage-derived interferon ß (IFNß), as endotoxin-stimulated macrophages produced higher amounts of IFNß, and exogenous addition of IFNß into ßTC6 cultures resulted in increased Xaf1 protein production and cleaved caspase 3, which accelerated ß-cell apoptosis. Macrophages activated by metabolic endotoxemia infiltrated into islets and produced IFNß, which induced ß-cell apoptosis by increasing the expression of Xaf1.


Subject(s)
Apoptosis , Endotoxemia/pathology , F-Box Proteins/metabolism , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Interferon-beta/metabolism , Macrophages/metabolism , Signal Transduction , Adaptor Proteins, Signal Transducing , Animals , Apoptosis Regulatory Proteins , Coculture Techniques , Mice , RAW 264.7 Cells , Up-Regulation/genetics
18.
Biochem Biophys Res Commun ; 495(1): 740-748, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29137982

ABSTRACT

OBJECTIVES: It is well-known that the complement system plays an essential role in host immunity. Observational studies have indicated that complement system-related molecules such as complement factor B (CfB) and other components are correlated with obesity and/or insulin resistance parameters. In this study, we investigated the role of adipocyte-derived CfB in adipose tissue metabolism. METHODS: We investigated the expression level of complement system-related genes in adipocytes. To understand the role of CfB in adipocyte, we performed Cfb overexpression in 3T3-L1 preadipocytes and generated adipocyte-specific Cfb transgenic mice. RESULTS: Cfb expression was markedly enhanced in 3T3-L1 adipocytes co-cultured with macrophages following endotoxin stimulation. In Cfb-overexpressing cells, the expression of adipocyte differentiation/maturation-related genes encoding peroxisome proliferator-activated receptor γ (Pparγ), adipocyte Protein 2 and perilipin was significantly enhanced. Cfb transgenic mice showed a marked increase in the expression of genes encoding Pparγ, perilipin, sterol regulatory element-binding protein 1 c, and Cd36 in the subcutaneous adipose tissue. CONCLUSIONS: CfB plays a crucial role in late-phase of adipocyte differentiation and subsequent lipid droplet formation.


Subject(s)
Adipocytes/immunology , Adipose Tissue/immunology , Cell Differentiation/immunology , Complement Factor B/immunology , Immunity, Innate/immunology , Lipid Droplets/immunology , 3T3-L1 Cells , Adipocytes/cytology , Adipogenesis/immunology , Adipose Tissue/cytology , Animals , Cell Proliferation , Cells, Cultured , Male , Mice , Mice, Transgenic
19.
Metabolism ; 69: 157-170, 2017 04.
Article in English | MEDLINE | ID: mdl-28285646

ABSTRACT

INTRODUCTION AND AIMS: Several studies have reported that angiopoietin-like protein 2 (Angptl2) is expressed abundantly in adipocytes and is associated with adipose tissue inflammation. In the present study, we found that osteoblasts and mesenchymal stem cells also expressed Angptl2 at high levels. The aim of this study was to understand the role of Angptl2 in osteoblastic cell differentiation. METHODS: Angptl2 expression was examined during osteoblast and adipocyte differentiation. The role of Angptl2 on cell differentiation and associated signaling was analyzed by gene knockdown using Angptl2 small interfering ribonucleic acid (siRNA). RESULTS: Angptl2 was highly expressed in MC3T3-E1 cells, ST2 cells and primary osteoblasts, but not in RAW264 cells. Inhibition of Angptl2 expression using siRNA markedly inhibited alkaline phosphatase (ALP) expression and osteoblastic differentiation in MC3T3-E1, ST2 cells and primary osteoblasts. Angptl2 siRNA also inhibited adipocyte differentiation in ST2 cells. Treatment of MC3T3-E1 cells with Angptl2 siRNA led to the down-regulation of the activities of several cell signaling pathways, including extracellular signal-regulated kinase (ERK), Jun amino-terminal kinase (JNK), Akt, and nuclear factor kappa B (NF-κB) signals. It also down-regulated the expression of Osterix, but not that of runt-related transcription factor 2 (Runx2), suggesting that Angptl2 is a positive activator of Osterix and its down-stream signals. Treatment of MC3T3-E1 cells with anti-Angptl2 antibodies suppressed ALP gene expression. In addition, treatment of Angptl2 siRNA-treated cells with culture supernatants of normal MC3T3-E1 cells restored ALP gene expression, indicating that Angptl2 acts in an autocrine manner. CONCLUSIONS: The results suggest that Angptl2 is an autocrine positive regulator of cell differentiation. Thus, it is suggested that Angptl2 regulates not only adipose tissue metabolism but also bone metabolism.


Subject(s)
Angiopoietins/genetics , Angiopoietins/physiology , Cell Differentiation/genetics , Cell Differentiation/physiology , Osteoblasts/physiology , Adipocytes/physiology , Angiopoietin-Like Protein 2 , Angiopoietin-like Proteins , Animals , Autocrine Communication/genetics , Autocrine Communication/physiology , Cells, Cultured , Gene Knockdown Techniques , Inflammation/genetics , Inflammation/pathology , MAP Kinase Signaling System/genetics , MAP Kinase Signaling System/physiology , Mesenchymal Stem Cells , Mice , RNA, Small Interfering , Signal Transduction/genetics , Signal Transduction/physiology
20.
Biochem Biophys Res Commun ; 477(2): 241-6, 2016 08 19.
Article in English | MEDLINE | ID: mdl-27311858

ABSTRACT

Interleukin-17A (IL-17A) is known to induce inflammatory responses and to be involved in the pathogenesis of not only autoimmune diseases, but also several metabolic and infectious diseases. In this study, IL-17A is shown to induce IL-6 expression in 3T3-L1 mature adipocytes. Interestingly, we found that IL-17A synergistically amplified TNFα-induced secretion of IL-6 and upregulation of IL-17RA expression in 3T3-L1 adipocytes. Its synergistic effects on IL-6 production were inhibited by pre-treatment with inhibitors of IκBα and JNK. Furthermore, IL-17A cooperatively enhanced LPS-mediated IL-6 production in 3T3-L1 adipocytes co-cultured with RAW264.7 macrophages. In addition, IL-17A also enhanced CCL20 production in 3T3-L1 adipocytes stimulated with TNFα or co-cultured with LPS-stimulated RAW macrophages. In high-fat diet-fed mouse epididymal adipose tissues, IL-17RA and RORγt mRNA levels were significantly increased and the serum level of CCL20 was also upregulated. Taken together, these data show that, in adipose tissues, IL-17A contributes to exacerbating insulin resistance-enhancing IL-6 production and promotes the infiltration of Th17 cells in cooperation with TNFα; these findings represent a novel hypothesis for the association between IL-17A-producing cells and type 2 diabetes.


Subject(s)
Adipocytes/immunology , Chemokine CCL20/immunology , Interleukin-17/immunology , Interleukin-6/immunology , Macrophages/immunology , Tumor Necrosis Factor-alpha/immunology , 3T3-L1 Cells , Adipocytes/drug effects , Animals , Interleukin-17/administration & dosage , Macrophages/drug effects , Male , Mice , Mice, Inbred C57BL , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...