Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ultrason Sonochem ; 31: 456-62, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26964972

ABSTRACT

The sonochemical reduction of MnO4(-) to MnO2 in aqueous solutions was investigated as a function of alcohol concentration under Ar. The rate of MnO4(-) reduction initially decreased with increasing alcohol concentration, and then increased when the alcohol concentration was increased further. The concentrations at which the reduction rates were minimum depended on the hydrophobic properties of the added alcohols under ultrasonic irradiation. At low concentrations, the alcohols acted as OH radical scavengers; at high concentrations, they acted as reductant precursors: Rab, formed by abstraction reactions of the alcohols with sonochemically formed OH radicals or H atoms, and Rpy, formed by alcohol pyrolysis under ultrasonic irradiation. The results suggest that the reactivity order of the sonochemically formed reducing species with MnO4(-) at pH 7-9 is the sum of H2O2 and H>Rpy>Rab. The peak wavelengths of MnO2 colloidal solutions formed at high 1-butanol concentrations shifted to shorter wavelengths, suggesting the formation of small particles at high 1-butanol concentrations. The rates of sonochemical reduction of MnO2 to Mn(2+) in the presence of 1-butanol were slower than that in the absence of 1-butanol, because the sonochemical formation of H2O2 and H, which act as reductants, was suppressed by 1-butanol in aqueous solutions.

2.
Ultrason Sonochem ; 16(3): 387-91, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19038568

ABSTRACT

Chemical effects of ultrasound have been actively researched in the field of the synthesis of various metal nanoparticles and nanostructured materials. It is very important to understand the reduction mechanism of metal ions, because the reduction processes can be often applied to the synthesis of various materials. In this study, the sonochemical reduction of MnO4- to MnO2 in water under Ar atmosphere was investigated to discuss the reduction mechanism. It has been reported that H, OH, H2 and H2O2 are formed from the sonolysis of water. To understand the roles of H2O2 on the reduction, the reaction of MnO4- with H2O2 without ultrasonic irradiation was investigated. The obtained results suggested the progress of the following reaction: 2MnO4-+3H2O2-->2MnO2+3O2+2OH-+2H2O. In addition, the rates of the sonochemical reduction of MnO4- were investigated in the presence of 1-propanol, where 1-propanol acted as an OH radical scavenger so that the amounts of the sonochemically formed H2O2 molecules were able to be controlled. The results clearly indicated that the sonochemically formed H2O2 molecules as well as H2 molecules and H atoms play an important role for MnO4- reduction. This mechanism was also supported by the analysis of pH changes during ultrasonic irradiation: the pH value increased as the sonochemical reduction of MnO4- proceeded.


Subject(s)
Hydrogen Peroxide/chemistry , Hydrogen Peroxide/chemical synthesis , Manganese Compounds/chemistry , Manganese Compounds/chemical synthesis , Oxides/chemistry , Oxides/chemical synthesis , Sonication , 1-Propanol/chemistry , Oxidation-Reduction , Time Factors , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...