Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Diabetol Int ; 13(3): 480-492, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35693999

ABSTRACT

Cancer is a major cause of death in patients with diabetes. Incretin therapy has received much attention because of its tissue-protective effects. We have previously reported an anti-breast cancer effect of glucagon-like peptide-1 receptor agonist exendin-4 (Ex-4). An anti-cancer effect of metformin is well recognized. Therefore, we examined the effect of combined treatment with Ex-4 and metformin in breast cancer cells. In human breast cancer cell lines MCF-7, MDA-MB-231, and KPL-1, 0.1-10 mM metformin significantly reduced the cell number in growth curve analysis in a dose-dependent manner. Furthermore, combined treatment with 0.1 mM metformin and 10 nM Ex-4 additively attenuated the growth curve progression of breast cancer cells. In a bromodeoxyuridine (BrdU) assay, Ex-4 or metformin significantly decreased breast cancer cell proliferation and further reduction of BrdU incorporation was observed by combined treatment with Ex-4 and metformin, which suggested that Ex-4 and metformin additively decreased DNA synthesis in breast cancer cells. Although apoptotic cells were not observed among Ex-4-treated breast cancer cells, apoptotic cells were clearly detected among metformin-treated breast cancer cells by apoptosis assays. Furthermore, metformin decreased BCL-2 expression in MCF-7 cells. In vivo experiments using a xenograft model showed that Ex-4 and metformin significantly decreased the breast tumor weight and Ki67-positive proliferative cancer cells, and metformin reduced the serum insulin level in mice. These data suggested that Ex-4 and metformin attenuated cell proliferation and metformin induced apoptosis in breast cancer cells. Combined treatment of Ex-4 and metformin may be an optional therapy to inhibit breast cancer progression.

2.
Diabetol Int ; 11(3): 274-282, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32802709

ABSTRACT

ABSTRACT: Dipeptidyl peptidase-4 inhibitors (DPP-4Is) are one of the most frequently prescribed anti-diabetic agents in Japan, and they are often used in combination with insulin secretagogues, such as sulfonylureas and glinides. In the present study, we determined the efficacy and safety of the use of repaglinide or glimepiride, a sulfonylurea, in combination with a DPP-4I, in Japanese patients with type 2 diabetes mellitus (T2DM). This study was an investigator-initiated, open-label, randomized, multi-center prospective study. Patients with T2DM, which was inadequately controlled using a DPP-4I, were randomized to a repaglinide group or a glimepiride group and treated for 48 weeks. The primary outcomes were the reductions in glycated hemoglobin (HbA1c) and glucose oscillation, identified using continuous glucose monitoring, after 12 weeks. The secondary outcome was the change in carotid intima-media thickness (IMT), measured by ultrasonography, after 48 weeks. A total of 61 patients were recruited and analyzed in the study. Twelve weeks of treatment with 1.5 mg repaglinide or 1 mg glimepiride significantly reduced HbA1c, and a larger reduction in HbA1c occurred in the repaglinide group than the glimepiride group. Mean subcutaneous glucose concentration was significantly reduced in both groups, but the glucose oscillation did not decrease. Interestingly, the mean left IMT significantly increased in the glimepiride group, but not in the repaglinide group. More hypoglycemic events were observed in the glimepiride group. These data suggest that repaglinide reduces HbA1c more effectively than glimepiride when used in combination with a DPP-4I, and causes fewer hypoglycemic events. TRAIL REGISTRY: This study is registered with UMIN-CTR (UMIN000018321).

3.
BMC Geriatr ; 20(1): 200, 2020 06 09.
Article in English | MEDLINE | ID: mdl-32517659

ABSTRACT

BACKGROUND: Frailty is broadly characterized by vulnerability and decline in physical, mental and social activities and is more common in elderly patients with type 2 diabetes mellitus (T2DM). Frailty is closely associated with nutrition, muscle strength, inflammation, and hormones etc. In hormones, dehydroepiandrosterone sulfate (DHEA-S) and cortisol are suggested to be such candidates affecting frailty. Little investigation has been performed using a wider range of measures of frailty to clarify risk factors for frailty including the above two hormones. METHODS: We performed a cross-sectional study to investigate the risk factors for frailty in elderly T2DM patients (n = 148; ≥65 years), using a broad assessment, the clinical frailty scale. We compared parameters between the non-frail and frail groups using the unpaired t and Mann-Whitney U tests. The Jonckheere-Therpstra test was used to identify relationships with the severity of frailty, and risk factors were identified using binary regression analysis. RESULTS: Simple regression analysis identified a number of significant risk factors for frailty, including DHEAS < 70 µg/dL and cortisol/DHEA-S ratio ≥ 0.2. Multiple regression analysis showed that low albumin (< 4.0 g/dl) (odds ratio [OR] = 5.79, p < 0.001), low aspartate aminotransferase (AST) activity (< 25 IU/L) (OR = 4.34, p = 0.009), and low body mass (BM) (< 53 kg) (OR = 3.85, p = 0.012) were independent risk factors for frailty. A significant decrease in DHEA-S and a significant increase in the cortisol/DHEA-S ratio occurred alongside increases in the severity of frailty. DHEA-S concentration positively correlated with both serum albumin and BM. CONCLUSIONS: Hypoalbuminemia, low AST, and low BM are independent risk factors for frailty in elderly T2DM patients, strongly implying relative malnutrition in these frail patients. DHEA-S may be important for the maintenance of liver function and BM. A decrease in DHEA-S and an increase in the cortisol/DHEAS ratio may be involved in the mechanism of the effect of malnutrition in elderly T2DM patients.


Subject(s)
Diabetes Mellitus, Type 2 , Frailty , Aged , Aspartate Aminotransferases , Cross-Sectional Studies , Dehydroepiandrosterone Sulfate , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/epidemiology , Frailty/diagnosis , Frailty/epidemiology , Humans , Risk Factors , Serum Albumin
4.
Endocr J ; 67(1): 99-106, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31776304

ABSTRACT

Cancer is currently one of the major causes of death in patients with type 2 diabetes mellitus. We previously reported the beneficial effects of the glucagon-like peptide-1 receptor agonist exendin-4 against prostate and breast cancer. In the present study, we examined the anti-cancer effect of the sodium-glucose cotransporter 2 (SGLT2) inhibitor ipragliflozin using a breast cancer model. In human breast cancer MCF-7 cells, SGLT2 expression was detected using both RT-PCR and immunohistochemistry. Ipragliflozin at 1-50 µM significantly and dose-dependently suppressed the growth of MCF-7 cells. BrdU assay also revealed that ipragliflozin attenuated the proliferation of MCF-7 cells in a dose-dependent manner. Because the effect of ipragliflozin against breast cancer cells was completely canceled by knocking down SGLT2, ipragliflozin could act via inhibiting SGLT2. We next measured membrane potential and whole-cell current using the patch clamp technique. When we treated MCF-7 cells with ipragliflozin or glucose-free medium, membrane hyperpolarization was observed. In addition, glucose-free medium and knockdown of SGLT2 by siRNA suppressed the glucose-induced whole-cell current of MCF-7 cells, suggesting that ipragliflozin inhibits sodium and glucose cotransport through SGLT2. Furthermore, JC-1 green fluorescence was significantly increased by ipragliflozin, suggesting the change of mitochondrial membrane potential. These findings suggest that the SGLT2 inhibitor ipragliflozin attenuates breast cancer cell proliferation via membrane hyperpolarization and mitochondrial membrane instability.


Subject(s)
Breast Neoplasms/genetics , Cell Proliferation/drug effects , Glucosides/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2/genetics , Thiophenes/pharmacology , Breast Neoplasms/metabolism , Cell Line, Tumor , Gene Knockdown Techniques , Humans , MCF-7 Cells , Membrane Potential, Mitochondrial , Patch-Clamp Techniques , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Sodium-Glucose Transporter 2/metabolism
5.
Endocrinology ; 158(12): 4218-4232, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29045658

ABSTRACT

Incretin therapies have received much attention because of their tissue-protective effects, which extend beyond those associated with glycemic control. Cancer is a primary cause of death in patients who have diabetes mellitus. We previously reported antiprostate cancer effects of the glucagonlike peptide-1 (GLP-1) receptor (GLP-1R) agonist exendin-4 (Ex-4). Breast cancer is one of the most common cancers in female patients who have type 2 diabetes mellitus and obesity. Thus, we examined whether GLP-1 action could attenuate breast cancer. GLP-1R was expressed in human breast cancer tissue and MCF-7, MDA-MB-231, and KPL-1 cell lines. We found that 0.1 to 10 nM Ex-4 significantly decreased the number of breast cancer cells in a dose-dependent manner. Although Ex-4 did not induce apoptosis, it attenuated breast cancer cell proliferation significantly and dose-dependently. However, the dipeptidyl peptidase-4 inhibitor linagliptin did not affect breast cancer cell proliferation. When MCF-7 cells were transplanted into athymic mice, Ex-4 decreased MCF-7 tumor size in vivo. Ki67 immunohistochemistry revealed that breast cancer cell proliferation was significantly reduced in tumors extracted from Ex-4-treated mice. In MCF-7 cells, Ex-4 significantly inhibited nuclear factor κB (NF-κB ) nuclear translocation and target gene expression. Furthermore, Ex-4 decreased both Akt and IκB phosphorylation. These results suggest that GLP-1 could attenuate breast cancer cell proliferation via activation of GLP-1R and subsequent inhibition of NF-κB activation.


Subject(s)
Breast Neoplasms/drug therapy , Cell Proliferation/drug effects , Glucagon-Like Peptide-1 Receptor/agonists , NF-kappa B/antagonists & inhibitors , Peptides/pharmacology , Venoms/pharmacology , Adult , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Exenatide , Female , Gene Expression Regulation, Neoplastic/drug effects , Glucagon-Like Peptide-1 Receptor/genetics , Glucagon-Like Peptide-1 Receptor/metabolism , Humans , Incretins/pharmacology , MCF-7 Cells , Mice, Nude , Middle Aged , NF-kappa B/metabolism , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...