Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neural Comput ; 34(12): 2408-2431, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36283050

ABSTRACT

Complex processes in science and engineering are often formulated as multistage decision-making problems. In this letter, we consider a cascade process, a type of multistage decision-making process. This is a multistage process in which the output of one stage is used as an input for the subsequent stage. When the cost of each stage is expensive, it is difficult to search for the optimal controllable parameters for each stage exhaustively. To address this problem, we formulate the optimization of the cascade process as an extension of the Bayesian optimization framework and propose two types of acquisition functions based on credible intervals and expected improvement. We investigate the theoretical properties of the proposed acquisition functions and demonstrate their effectiveness through numerical experiments. In addition, we consider suspension setting, an extension in which we are allowed to suspend the cascade process at the middle of the multistage decision-making process that often arises in practical problems. We apply the proposed method in a test problem involving a solar cell simulator, the motivation for this study.

2.
Neural Comput ; 33(12): 3413-3466, 2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34710906

ABSTRACT

In many product development problems, the performance of the product is governed by two types of parameters: design parameters and environmental parameters. While the former is fully controllable, the latter varies depending on the environment in which the product is used. The challenge of such a problem is to find the design parameter that maximizes the probability that the performance of the product will meet the desired requisite level given the variation of the environmental parameter. In this letter, we formulate this practical problem as active learning (AL) problems and propose efficient algorithms with theoretically guaranteed performance. Our basic idea is to use a gaussian process (GP) model as the surrogate model of the product development process and then to formulate our AL problems as Bayesian quadrature optimization problems for probabilistic threshold robustness (PTR) measure. We derive credible intervals for the PTR measure and propose AL algorithms for the optimization and level set estimation of the PTR measure. We clarify the theoretical properties of the proposed algorithms and demonstrate their efficiency in both synthetic and real-world product development problems.

SELECTION OF CITATIONS
SEARCH DETAIL
...