Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Pollut ; 313: 120110, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36075335

ABSTRACT

Nickel (Ni) and manganese (Mn) are well known for the production of steel and alloys and are commonly found co-occurring in Ni ores. They are metals of environmental concern and contamination in the marine environment is problematic single exposures and in combination. Several studies have documented the effects of single metal exposure on the model anemone E. pallida, but research on the effects of metal mixtures is far less common. This novel study assesses the accumulation and stress effects of Ni and Mn over a 12-d exposure period. E. pallida were exposed in two separate experiments; Ni alone and Ni in combination with Mn, to assess accumulation, along with any effect on the density of symbionts and anemone tentacle length. Anemones were transferred to ambient seawater to assess depuration and recovery over 6 d. Anemone tissue accumulated Ni at a magnitude of five times higher in a mixture of 0.5 mg Ni/L with 2.5 mg Mn/L compared to the same concentration in a single Ni exposure experiment. In both experiments, Ni and Mn preferentially accumulated in the Symbiodinium spp. compared to the anemone tissue, but Ni depuration was more rapid in the mixture than Ni alone exposure. This study reveals a significant reduction in anemone Symbiodinium spp. density after exposure to Ni and Mn mixtures, but not with Ni exposure alone. A significant dose-dependent reduction in tentacle length was observed in anemones after 12 d of the Ni exposure both with and without Mn. The estimated sublethal concentration that causes tentacle retraction in 50% of test anemones (EC50) by Ni was 0.51 (0.25-0.73) mg/L, while in combination with Mn the EC50 was 0.30 mg Ni/L (confidence limits not calculatable). The present data reveals the importance of testing metal effects in combination before establishing safe limits for marine invertebrates.


Subject(s)
Dinoflagellida , Sea Anemones , Water Pollutants, Chemical , Alloys/pharmacology , Animals , Copper/pharmacology , Ions/pharmacology , Manganese/toxicity , Nickel/toxicity , Steel , Water Pollutants, Chemical/toxicity
2.
Chemosphere ; 295: 133895, 2022 May.
Article in English | MEDLINE | ID: mdl-35143868

ABSTRACT

Manganese (Mn) is essential for global steel and Mn-iron (Fe) alloy production. The human health effects of elevated Mn concentrations have been well established, but studies on its impact on marine invertebrates are limited. This study is the first to investigate Mn uptake in the sea anemone Exaiptasia pallida after chronic exposure (0.5, 1, 10, and 100 mg/L) for 24-d. Following exposure, E. pallida were transferred to ambient seawater for 6-d to assess Mn depuration. Mn accumulation and partitioning in host tissue and symbionts (Symbiodinium spp.), tentacle retraction, and symbiont cell density were measured during exposure and depuration. Mn concentrations were substantially higher in symbionts than tissue in all treatments after 24-d. No significant difference was observed for symbiont cell density after Mn exposure. Tentacle retractions were significantly higher in all Mn exposed treatments than controls at all time points. Mn depuration was observed for both tissue and symbionts but was more rapid in symbionts. This study reveals that Symbiodinium spp. can play a role in Mn uptake and depuration in anemones, but Mn loading does not affect cell density. These results help understand metal uptake and depuration in complex relationships between Symbiodinium spp. and other host taxa like corals.


Subject(s)
Anthozoa , Dinoflagellida , Sea Anemones , Animals , Manganese/pharmacology , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL