Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurophysiol ; 118(3): 1439-1456, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28469003

ABSTRACT

Following rostral spinal cord injury (SCI) in larval lampreys, injured descending brain neurons, particularly reticulospinal (RS) neurons, regenerate their axons, and locomotor behavior recovers in a few weeks. However, axonal regeneration of descending brain neurons is mostly limited to relatively short distances, but the mechanisms for incomplete axonal regeneration are unclear. First, lampreys with rostral SCI exhibited greater axonal regeneration of descending brain neurons, including RS neurons, as well as more rapid recovery of locomotor muscle activity right below the lesion site, compared with animals with caudal SCI. In addition, following rostral SCI, most injured RS neurons displayed the "injury phenotype," whereas following caudal SCI, most injured neurons displayed normal electrical properties. Second, following rostral SCI, at cold temperatures (~4-5°C), axonal transport was suppressed, axonal regeneration and behavioral recovery were blocked, and injured RS neurons displayed normal electrical properties. Cold temperatures appear to prevent injured RS neurons from detecting and/or responding to SCI. It is hypothesized that following rostral SCI, injured descending brain neurons are strongly stimulated to regenerate their axons, presumably because of elimination of spinal synapses and reduced neurotrophic support. However, when these neurons regenerate their axons and make synapses right below the lesion site, restoration of neurotrophic support very likely suppress further axonal regeneration. In contrast, caudal SCI is a weak stimulus for axonal regeneration, presumably because of spared synapses above the lesion site. These results may have implications for mammalian SCI, which can spare synapses above the lesion site for supraspinal descending neurons and propriospinal neurons.NEW & NOTEWORTHY Lampreys with rostral spinal cord injury (SCI) exhibited greater axonal regeneration of descending brain neurons and more rapid recovery of locomotor muscle activity below the lesion site compared with animals with caudal SCI. In addition, following rostral SCI, most injured reticulospinal (RS) neurons displayed the "injury phenotype," whereas following caudal SCI, most injured neurons had normal electrical properties. We hypothesize that following caudal SCI, the spared synapses of injured RS neurons might limit axonal regeneration and behavioral recovery.


Subject(s)
Axons/physiology , Nerve Regeneration , Spinal Cord Injuries/physiopathology , Animals , Lampreys , Motor Activity , Muscle, Skeletal/innervation , Pyramidal Tracts/physiopathology , Spinal Cord Injuries/pathology
2.
Naunyn Schmiedebergs Arch Pharmacol ; 385(1): 27-38, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21947254

ABSTRACT

The in vivo role of endothelial nitric oxide synthase (eNOS) uncoupling mediating oxidative stress in ischemia/reperfusion (I/R) injury has not been well established. In vitro, eNOS coupling refers to the reduction of molecular oxygen to L-arginine oxidation and generation of L-citrulline and nitric oxide NO synthesis in the presence of an essential cofactor, tetrahydrobiopterin (BH(4)). Whereas uncoupled eNOS refers to that the electron transfer becomes uncoupled to L-arginine oxidation and superoxide is generated when the dihydrobiopterin (BH(2)) to BH(4) ratio is increased. Superoxide is subsequently converted to hydrogen peroxide (H(2)O(2)). We tested the hypothesis that promoting eNOS coupling or attenuating uncoupling after I/R would decrease H(2)O(2)/increase NO release in blood and restore postreperfused cardiac function. We combined BH(4) or BH(2) with eNOS activity enhancer, protein kinase C epsilon (PKC ε) activator, or eNOS activity reducer, PKC ε inhibitor, in isolated rat hearts (ex vivo) and femoral arteries/veins (in vivo) subjected to I(20 min)/R(45 min). When given during reperfusion, PKC ε activator combined with BH(4), not BH(2), significantly restored postreperfused cardiac function and decreased leukocyte infiltration (p < 0.01) while increasing NO (p < 0.05) and reducing H(2)O(2) (p < 0.01) release in femoral I/R veins. These results provide indirect evidence suggesting that PKC ε activator combined with BH(4) enhances coupled eNOS activity, whereas it enhanced uncoupled eNOS activity when combined with BH(2). By contrast, the cardioprotective and anti-oxidative effects of the PKC ε inhibitor were unaffected by BH(4) or BH(2) suggesting that inhibition of eNOS uncoupling during reperfusion following sustained ischemia may be an important mechanism.


Subject(s)
Biopterins/analogs & derivatives , Myocardial Reperfusion Injury/physiopathology , Nitric Oxide Synthase Type III/physiology , Protein Kinase C-epsilon/physiology , Animals , Biopterins/pharmacology , Femoral Vein/drug effects , Femoral Vein/metabolism , Heart/drug effects , Heart/physiopathology , Hydrogen Peroxide/metabolism , In Vitro Techniques , Male , Myocardial Contraction/drug effects , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardium/pathology , NG-Nitroarginine Methyl Ester/pharmacology , Neutrophils/physiology , Nitric Oxide/metabolism , Oxidative Stress/drug effects , Protein Kinase C-epsilon/antagonists & inhibitors , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...