Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
World J Stem Cells ; 13(7): 934-943, 2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34367485

ABSTRACT

The classical cancer stem cell (CSCs) theory proposed the existence of a rare but constant subpopulation of CSCs. In this model cancer cells are organized hierarchically and are responsible for tumor resistance and tumor relapse. Thus, eliminating CSCs will eventually lead to cure of cancer. This simplistic model has been challenged by experimental data. In 2010 we proposed a novel and controversial alternative model of CSC biology (the Stemness Phenotype Model, SPM). The SPM proposed a non-hierarchical model of cancer biology in which there is no specific subpopulation of CSCs in tumors. Instead, cancer cells are highly plastic in term of stemness and CSCs and non-CSCs can interconvert into each other depending on the microenvironment. This model predicts the existence of cancer cells ranging from a pure CSC phenotype to pure non-CSC phenotype and that survival of a single cell can originate a new tumor. During the past 10 years, a plethora of experimental evidence in a variety of cancer types has shown that cancer cells are indeed extremely plastic and able to interconvert into cells with different stemness phenotype. In this review we will (1) briefly describe the cumulative evidence from our laboratory and others supporting the SPM; (2) the implications of the SPM in translational oncology; and (3) discuss potential strategies to develop more effective therapeutic regimens for cancer treatment.

2.
Am J Pharm Educ ; 83(6): 6959, 2019 08.
Article in English | MEDLINE | ID: mdl-31507290

ABSTRACT

Members from Cohort 13 of the Academic Leadership Fellows Program (ALFP) 2016-2017 were challenged to present a debate on the topic: "In Turbulent Times, Pharmacy Education Leaders Must Take Aggressive Action to Prevent Further Declines in Enrollment" at the American Association of Colleges of Pharmacy INfluence 2017 meeting in Rio Grande, Puerto Rico. This paper is the result of thoughtful insights emerging from this debate. We present a discussion of the question of whether pharmacy education leaders must take aggressive action or strategic approaches to prevent further declines in enrollment. There are many thoughts regarding current declines in enrollment. Some educators contend that a more aggressive approach is needed while others argue that, while aggressive actions might lead to short-term gains, a more viable approach involves strategic actions targeting the underlying causes for decreasing enrollment. This paper explores themes of enrollment challenges, current and future workforce needs, and financial issues for both pharmacy programs and students. In summation, both aggressive actions and a strategic, sustainable approach are urgently needed to address declining enrollment.


Subject(s)
Education, Pharmacy/trends , Schools, Pharmacy/trends , Humans , Leadership , Pharmaceutical Services/trends , Pharmacy/trends , Students, Pharmacy , United States
3.
Proteomics Clin Appl ; 12(3): e1700086, 2018 05.
Article in English | MEDLINE | ID: mdl-29283216

ABSTRACT

PURPOSE: Poor molecular characterization of idiopathic pulmonary fibrosis (IPF) has led to insufficient understanding of the pathogenesis of the disease, resulting in lack of effective therapies and poor prognosis. Particularly, the role of lipid imbalance due to impaired lipid metabolism in the pathogenesis of IPF has been poorly studied. EXPERIMENTAL DESIGN: The authors have used shotgun lipidomics in a bleomycin (BLM) mouse model of pulmonary fibrosis with vascular endothelial growth factor (VEGF)-inhibitor CBO-P11 as a therapeutic measure, to identify a comprehensive set of lipids that contribute to the pathogenesis of pulmonary fibrosis. RESULTS: The authors report that attenuation of BLM-induced fibrotic response with CBO-P11 cotreatment is accompanied by a decrease in total lipid content and specific downregulation of lipids, which are upregulated in response to BLM treatment. CONCLUSION AND CLINICAL RELEVANCE: Dysregulated lipids identified in this study hold the potential of being future biomarkers for IPF.


Subject(s)
Bleomycin/adverse effects , Computational Biology , Endothelial Growth Factors/pharmacology , Lipid Metabolism , Peptides, Cyclic/pharmacology , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Animals , Endothelial Growth Factors/therapeutic use , Fatty Acids/biosynthesis , Lipid Metabolism/drug effects , Lung/drug effects , Lung/metabolism , Mice , Mice, Inbred C57BL , Peptides, Cyclic/therapeutic use , Phospholipids/metabolism , Pulmonary Fibrosis/drug therapy , Up-Regulation/drug effects
4.
J Clin Neurosci ; 47: 28-42, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29066236

ABSTRACT

Despite the vast amounts of information gathered about gliomas, the overall survival of glioma patients has not improved in the last four decades. This could partially be due to an apparent failure to include basic concepts of glioma biology into clinical trials. Specifically, attempts to overcome the limitations of the blood brain barrier (BBB) and the chemoresistance of glioma stem cells (GSCs) were seldom included (a phenomenon known as the translational gap, TG) in a study involving 29 Phase I/II clinical trials (P2CT) published in 2011. The aim of this study was to re-evaluate this finding with a new series of 100 ongoing, but still unpublished, P2CT in order to determine if there is a TG reduction. As indicators, we evaluated in each P2CT the number of drugs tested, concomitant radiotherapy, and the ability of drugs to pass the BBB and to target GSCs. Compared to clinical trials published in 2011, we found that while in OCT there is an increase in the number of P2CT using two drugs (from 24.1% to 44.9%), and an increase in the number of drugs able to pass the BBB (7.14% versus 64.29%) and target GSCs (0% versus 16.3%), there was a decrease in the number of P2CT using concomitant radiotherapy (34.5% versus 18.37%). Overall our results suggest that there is only a modest improvement regarding reducing the TG because the vast majority of ongoing P2CT are still not including well known concepts of glioma biology important for a successful treatment.


Subject(s)
Blood-Brain Barrier/drug effects , Brain Neoplasms/drug therapy , Clinical Trials, Phase II as Topic , Glioma/drug therapy , Neoplastic Stem Cells/drug effects , Humans
5.
Stem Cells Int ; 2017: 5987015, 2017.
Article in English | MEDLINE | ID: mdl-29201061

ABSTRACT

The presence of highly resistant cancer cells and the toxicity to normal cells are key factors that limit chemotherapy. Here, we used two models of highly resistant lung cancer cells: (1) adherent cells growing under prolonged periods of serum starvation (PPSS) and (2) cells growing as floating tumorspheres (FTs) to evaluate the effect of Verapamil (VP) in combination with Sorafenib (SF). Compared to cells growing under routine culture conditions (RCCs), PPPS cells or FTs were highly sensitive to short-term exposure (24 h) to VP 100 µM + SF 5 µM (VP100 + SF5). Recovery experiments exposing cells to VP100 + SF5 for 24 h followed by incubation in drug-free media for 48 h demonstrated that while PPSS as well as FT cells were unable to recover, cancer cells and the noncancerous cell line Beas-2B growing under RCCs were less sensitive and were also able to recover significantly. VP100 + SF5 induced significant changes in the expression of protein associated with apoptosis, autophagy, and to a lesser extent necroptosis. Coincubation experiments with z-VAD-FMK, necrostatin 1, or chloroquine showed evidence that necroptosis played a central role. Our data demonstrates that highly resistant cancer cells can be selectively eliminated by VP + SF and that necroptosis plays a central role.

6.
Pharmacol Rep ; 69(4): 788-797, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28605700

ABSTRACT

BACKGROUND: Resveratrol is a dietary compound that has been widely reported for its anticancer activities. However, successful extrapolation of its effects to pre-clinical studies is met with limited success due to inadequate bioavailability. We investigated the potential of combination therapy to improve the efficacy of resveratrol in a more physiologically relevant dose range. METHODS: The effect of resveratrol on canonical Wnt signaling was evaluated by Western blotting. Wnt modulators HLY78 (activator) and salinomycin (inhibitor) were evaluated in combination with resveratrol for their effect on breast cancer cell viability (MTT assay), cell cycle progression and apoptosis (Western blotting). Bliss independency model was used to evaluate combinatorial effects of resveratrol-salinomycin combination. RESULTS: Resveratrol downregulated canonical Wnt signaling proteins in treated breast cancer cells (MCF-7, MDA-MB-231 and MDA-MB-468) in the dose range of 50-200µM, which also affected cellular viability. However, at very low doses (0-50µM), resveratrol exhibited no cellular toxicity. Co-treatment with salinomycin significantly potentiated the anti-cancer effects of resveratrol, whereas HLY78 co-treatment had minimal effect. Bliss independency model revealed that Wnt inhibition synergistically potentiates the effects of resveratrol in MCF-7 and BT474 cells. Significantly downregulated canonical Wnt signaling proteins and marker of epithelial-mesenchymal transition (EMT), vimentin were observed in cells treated with resveratrol-salinomycin combination. Cell cycle arrest, caspase activation and apoptosis induction in cells treated with resveratrol-salinomycin combination further confirmed the efficacy of the combination. CONCLUSION: We report a novel resveratrol-salinomycin combination for targeting ER-positive breast cancer cells and present evidence for successful pre-clinical implementation of resveratrol.


Subject(s)
Breast Neoplasms/drug therapy , Pyrans/administration & dosage , Pyrans/therapeutic use , Receptors, Estrogen/metabolism , Stilbenes/administration & dosage , Stilbenes/therapeutic use , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/therapeutic use , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/therapeutic use , Apoptosis/drug effects , Cell Line, Tumor , Drug Therapy, Combination , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Resveratrol , Signal Transduction , Wnt Proteins/genetics , Wnt Proteins/metabolism
7.
Tumour Biol ; 39(6): 1010428317705331, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28618929

ABSTRACT

While there are targeted treatments for triple positive breast cancers, lack of specific biomarkers for triple-negative breast cancers (TNBC) has hindered the development of therapies for this subset of cancers. In this study, we evaluated the anticancer properties of cardiac glycoside Digitoxin (Dtx) and its synthetic analog MonoD on breast cancer cell lines MCF-7 (estrogen receptor-positive breast cancer) and MDA-MB-468 (triple-negative breast cancer). Both cardiac glycosides, at concentrations within the therapeutic range, increased the fraction of cells in the G0/G1 phase of the cell cycle, decreased viability, and inhibited the migration of MCF-7 and MDA-MB-468 cells. Both cardiac glycosides increased production of superoxide and induced apoptosis in both cell types. Reduced protein levels of nuclear factor kappa B and IkappaB kinase-beta were found in cardiac glycoside-treated cells, indicating that the cellular effects of these compounds are mediated via nuclear factor kappa B pathway. This study demonstrates the cytotoxic potential of digitoxin, and more importantly its synthetic analog MonoD, in the treatment of triple-positive breast cancer and more importantly the aggressive triple-negative breast cancer. Collectively, this study provides a basis for the reevaluation of cardiac glycosides in the treatment of breast cancer and more importantly reveals their potential in the treatment of triple-negative breast cancers.


Subject(s)
Digitoxin/administration & dosage , Receptors, Estrogen/genetics , Triple Negative Breast Neoplasms/drug therapy , Animals , Carcinogenesis/genetics , Cardiac Glycosides/genetics , Cell Cycle/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Digitoxin/analogs & derivatives , Female , Humans , MCF-7 Cells , Mice , NF-kappa B/genetics , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor Assays
8.
J Cell Biochem ; 118(11): 3834-3845, 2017 11.
Article in English | MEDLINE | ID: mdl-28387458

ABSTRACT

Prostate cancer (PCa) is one of the leading causes of cancer-related deaths in men worldwide. Fatty acid synthase (FASN) is reported to be overexpressed in several cancers including PCa, and this has led to clinical cancer treatments that utilize various FASN inhibitors such as the anti-obesity drug, Orlistat. However, pharmacological limitations have impeded the progress in cancer treatments expected thus far with FASN inhibition. In this study, we investigated a novel therapeutic combination to enhance the toxic potential of Orlistat in three different PCa cell-lines (DU145, PC3, and LNCaP). We show that Orlistat and 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) (AMP-activated protein kinase [AMPK] activator) co-treatment induces significant downregulation of two key fatty acid synthesis regulatory proteins (FASN, Sterol regulatory element-binding protein 1 [SREBP-1c]) as compared to control and Orlistat alone. Orlistat and AICAR co-treatment induced a significant decrease in cell viability and proliferation, and a significant increase in apoptosis in all three PCa cell-lines. Apoptosis induction was preceded by a marked increase in reactive oxygen species (ROS) production followed by G0/G1 cell cycle arrest and activation of pro-apoptotic caspases. We also observed a significant decrease in migration potential and VEGF expression in Orlistat and AICAR co-treated samples in all three PCa cell-lines. Compound C (AMPK inhibitor) negatively affected some of the enhanced anti-cancer effects observed with Orlistat treatment. We conclude that AICAR co-treatment potentiates the anti-proliferative effects of Orlistat at a low dose (100 µM), and this combination has the potential to be a viable and effective therapeutic option in PCa treatment. J. Cell. Biochem. 118: 3834-3845, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
Aminoimidazole Carboxamide/analogs & derivatives , Apoptosis/drug effects , Cell Movement/drug effects , G1 Phase Cell Cycle Checkpoints/drug effects , Lactones/pharmacology , Prostatic Neoplasms/drug therapy , Resting Phase, Cell Cycle/drug effects , Ribonucleotides/metabolism , Aminoimidazole Carboxamide/metabolism , Cell Line, Tumor , Humans , Male , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/metabolism , Orlistat , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Reactive Oxygen Species/metabolism
9.
Cell Death Discov ; 3: 17009, 2017.
Article in English | MEDLINE | ID: mdl-28250972

ABSTRACT

Breast cancer is second most prevalent cancer in women, and the second only to lung cancer in cancer-related deaths. It is a heterogeneous disease and has several subtypes based on the presence or absence of hormone receptors and/or human epidermal growth factor receptor 2 (HER2). Hormone receptor-positive and HER2-enriched cancers can be targeted using hormone and HER2-targeting therapies such as trastuzumab or lapatinib. However, triple-negative breast cancers (TNBCs) do not express any of the receptors and therefore are resistant to most targeted therapies, and cytotoxic chemotherapies are the only viable option available for the treatment of TNBCs. Recently, cardiac glycosides (CGs) have emerged as potential anticancer agents that impart their antiproliferative effect by targeting multiple pathways. In this study our aim was to evaluate anticancer effects of two naturally occurring CGs, Convallatoxin (CT) and Peruvoside (PS), on ER+ and TNBCs cells. CT and PS demonstrated dose- and time-dependent cytotoxic effect on MCF-7 cells, which was further supported by loss of colony formation on drug treatment. CT and PS arrested MCF-7 cells in the G0/G1 phase and reduced the viability of MCF-7-derived mammospheres (MMs). Interestingly, while CT and PS imparted cell death in TNBCs cells from both Caucasians (MDA-MB-231 cells) and African Americans (MDA-MB-468 cells) in a dose- and time-dependent manner, the drugs were much more potent in MDA-MB-468 as compared with TNBC MDA-MB-231 cells. Both drugs significantly inhibited migration and invasion of both MCF-7 and MDA-MB-468 cells. An assessment of intracellular pathways indicated that both drugs were able to modulate several key cellular pathways such as EMT, cell cycle, proliferation and cell death in both cell types. Our data suggest a promising role for CGs in breast cancer treatment specifically in targeting TNBCs derived from African Americans, and provides impetus for further investigation of the anticancer potential of this class of drugs.

10.
Tumour Biol ; 39(3): 1010428317694310, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28351327

ABSTRACT

Multiple factors including tumor heterogeneity and intrinsic or acquired resistance have been associated with drug resistance in lung cancer. Increased stemness and the plasticity of cancer cells have been identified as important mechanisms of resistance; therefore, treatments targeting cancer cells independent of stemness phenotype would be much more effective in treating lung cancer. In this article, we have characterized the anticancer effects of the antibiotic Nigericin in cells displaying varying degrees of stemness and resistance to anticancer drugs, arising from (1) routine culture conditions, (2) prolonged periods of serum starvation. These cells are highly resistant to conventional anticancer drugs such as Paclitaxel, Hydroxyurea, Colchicine, Obatoclax, Wortmannin, and LY294002, and the multidrug-resistant phenotype of cells growing under prolonged periods of serum starvation is likely the result of extensive rewiring of signaling pathways, and (3) lung tumorspheres that are enriched for cancer stem-like cells. We found that Nigericin potently inhibited the viability of cells growing under routine culture conditions, prolonged periods of serum starvation, and lung tumorspheres. In addition, we found that Nigericin downregulated the expression of key proteins in the Wnt canonical signaling pathway such as LRP6, Wnt5a/b, and ß-catenin, but promotes ß-catenin translocation into the nucleus. The antitumor effects of Nigericin were potentiated by the Wnt activator HLY78 and by therapeutic levels of the US Food and Drug Administration-approved drug Digitoxin and its novel synthetic analog MonoD. We believe that Nigericin may be used in a co-therapy model in combination with other novel chemotherapeutic agents in order to achieve potent inhibition of cancers that display varying degrees of stemness, potentially leading to sustained anticancer effects.


Subject(s)
Benzodioxoles/administration & dosage , Drug Resistance, Neoplasm/drug effects , Lung Neoplasms/drug therapy , Nigericin/administration & dosage , Phenanthridines/administration & dosage , Antineoplastic Agents/administration & dosage , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Multiple/drug effects , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Neoplastic Stem Cells/drug effects , Wnt Signaling Pathway/drug effects
11.
Curr Cancer Drug Targets ; 17(7): 669-680, 2017.
Article in English | MEDLINE | ID: mdl-28302032

ABSTRACT

BACKGROUND: Resveratrol has been shown to have antioxidant and anti-proliferative properties in multiple cancer types. Here we demonstrate that H460 lung cancer cells are more susceptible to resveratrol treatment in comparison to human bronchial epithelial Beas-2B cells. Resveratrol decreases cell viability and proliferation, and induces significant apoptosis in H460 cells. The apoptosis observed was accompanied by an increase in hydrogen peroxide (H2O2) production, Bid, PARP and caspase 8 activation, and downregulation of pEGFR, pAkt, c-FLIP and NFkB protein expression. Furthermore, treatment with HH2O2 scavenger catalase significantly inhibited resveratrol-induced c-FLIP downregulation, caspase-8 activation and apoptosis. Overexpression of c-FLIP in H460 cells (FLIP cells) resulted in the inhibition of resveratrol-induced HH2O2 production, and a significant increase in resveratrolinduced apoptosis in comparison to H460 cells. In FLIP cells, catalase treatment did not rescue cells from a decrease in cell viability and apoptosis induction by resveratrol as compared to H460 cells. Resveratrol treatment also led to VEGF downregulation in FLIP cells. Furthermore, inhibition of pEGFR or pAkt using erlotinib and LY294002 respectively, enhanced the negative effect of resveratrol on FLIP cell viability and apoptosis. The reverse was observed when FLIP cells were supplemented with EGF, or transfected with WT-AKT plasmid; resulting in a 20% decrease in resveratrol-induced apoptosis. In addition, transfection with WT-AKT plasmid resulted in the inhibition of pro-apoptotic protein activation, and c-FLIP and pAkt downregulation. CONCLUSION: Overall, resveratrol induced apoptosis in H460 lung cancer cells by specifically targeting pAkt and c-FLIP dowregulation by proteasomal degradation in a EGFR-dependent manner.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , Lung Neoplasms/drug therapy , Stilbenes/pharmacology , Apoptosis/drug effects , Apoptosis Regulatory Proteins/metabolism , CASP8 and FADD-Like Apoptosis Regulating Protein/genetics , Cell Line, Tumor , Humans , Hydrogen Peroxide/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Resveratrol
12.
J Cell Physiol ; 232(9): 2280-2286, 2017 Sep.
Article in English | MEDLINE | ID: mdl-27925198

ABSTRACT

In cancer cells, the reversible nature of the stemness status in terms of chemoresistance has been poorly characterized. In this study, we have simulated one cycle of environmental conditions to study such reversibility by first generating floating tumorspheres (FTs) from lung and breast cancer cells by culturing them in serum-free media without the addition of any external mitogenic stimulation, and subsequently (after 2 weeks) re-incubating them back in serum-containing media to simulate routine culture conditions (RCCs). We found that cancer cells are extremely plastic: cells grown under RCCs become multidrug-resistant when grown as FTs, but upon re-incubation under RCCs quickly re-attach and lose the acquired resistance. These phenotypic changes are accompanied by concomitant changes in the expression of key proteins associated with multiple pathways important for chemoresistance, survival, and stemness maintenance. Therefore, our strategy provides an excellent experimental model to study environmental factors that modulate the plasticity of cancer cells. J. Cell. Physiol. 232: 2280-2286, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Antineoplastic Agents/pharmacology , Biomarkers, Tumor/metabolism , Breast Neoplasms/drug therapy , Cell Plasticity/drug effects , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Lung Neoplasms/drug therapy , Neoplastic Stem Cells/drug effects , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Adhesion , Cell Proliferation , Culture Media, Serum-Free/metabolism , Dose-Response Relationship, Drug , Down-Regulation , Epidermal Growth Factor/pharmacology , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Female , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , MCF-7 Cells , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Phenotype , Protein Kinase Inhibitors/pharmacology , Signal Transduction/drug effects , Spheroids, Cellular , Time Factors
13.
Drug Chem Toxicol ; 40(1): 90-100, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27310834

ABSTRACT

Titanium dioxide (TiO2) is a ubiquitous whitening compound widely used in topical products such as sunscreens, lotions and facial creams. The damaging health effects of TiO2 inhalation has been widely studied in rats, mice and humans showing oxidative stress increase, DNA damage, cell death and inflammatory gene upregulation in lung and throat cells; however, the effects on skin cells from long-term topical use of various products remain largely unknown. In this study, we assessed the effect of specific TiO2 nanoparticles (H2TiO7) on a human keratinocyte cell line (HaCaT). We performed a comparative analysis using three TiO2 particles varying in size (Fine, Ultrafine and H2TiO7) and analyzed their effects on HaCaTs. There is a clear dose-dependent increase in superoxide production, caspase 8 and 9 activity, and apoptosis in HaCaTs after treatment with all three forms of TiO2; however, there is no consistent effect on cell viability and proliferation with either of these TiO2 particles. While there is data suggesting UV exposure can enhance the carcinogenic effects of TiO2, we did not observe any significant effect of UV-C exposure combined with TiO2 treatment on HaCaTs. Furthermore, TiO2-treated cells showed minimal effects on VEGF upregulation and Wnt signaling pathway thereby showing no potential effect on angiogenesis and malignant transformation. Overall, we report here an increase in apoptosis, which may be caspase 8/Fas-dependent, and that the H2TiO7 nanoparticles, despite their smaller particle size, had no significant enhanced effect on HaCaT cells as compared to Fine and Ultrafine forms of TiO2.


Subject(s)
Apoptosis/drug effects , Keratinocytes/drug effects , Nanoparticles/toxicity , Skin/drug effects , Titanium/toxicity , Apoptosis Regulatory Proteins/metabolism , Blotting, Western , Caspases/metabolism , Cell Culture Techniques , Cell Line , Cell Survival/drug effects , Collagen/metabolism , Enzyme-Linked Immunosorbent Assay , Humans , Keratinocytes/pathology , Nanoparticles/chemistry , Oxidative Stress/drug effects , Particle Size , Reactive Oxygen Species/metabolism , Skin/metabolism , Skin/pathology , Titanium/chemistry
14.
J Cell Physiol ; 232(3): 506-516, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27649046

ABSTRACT

Cellular oxidative stress is implicated not only in lung injury but also in contributing to the development of pulmonary fibrosis. We demonstrate that a cell-permeable superoxide dismutase (SOD) mimetic and peroxynitrite scavenger, manganese (III) tetrakis (4-benzoic acid) porphyrin chloride (MnTBAP) significantly inhibited bleomycin-induced fibrogenic effects both in vitro and in vivo. Further investigation into the underlying mechanisms revealed that MnTBAP targets canonical Wnt and non-canonical Wnt/Ca2+ signaling pathways, both of which were upregulated by bleomycin treatment. The effect of MnTBAP on canonical Wnt signaling was significant in vivo but inconclusive in vitro and the non-canonical Wnt/Ca2+ signaling pathway was observed to be the predominant pathway regulated by MnTBAP in bleomycin-induced pulmonary fibrosis. Furthermore, we show that the inhibitory effects of MnTBAP involve regulation of VEGF which is upstream of the Wnt signaling pathway. Overall, the data show that the superoxide scavenger MnTBAP attenuates bleomycin-induced pulmonary fibrosis by targeting VEGF and Wnt signaling pathways. J. Cell. Physiol. 232: 506-516, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Metalloporphyrins/pharmacology , Metalloporphyrins/therapeutic use , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Vascular Endothelial Growth Factor A/metabolism , Wnt Signaling Pathway/drug effects , Animals , Biomarkers/metabolism , Bleomycin , Calcium Signaling/drug effects , Cell Line , Humans , Mice, Inbred C57BL , Neovascularization, Physiologic/drug effects , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Up-Regulation/drug effects
15.
J Cell Physiol ; 232(9): 2497-2507, 2017 Sep.
Article in English | MEDLINE | ID: mdl-27662422

ABSTRACT

Lung cancer is a leading cause of cancer-related death in the United States. Although several drugs have been developed that target individual biomarkers, their success has been limited due to intrinsic or acquired resistance for the specific targets of such drugs. A more effective approach is to target multiple pathways that dictate cancer progression. Cardiac glycosides demonstrate such multimodal effects on cancer cell survival, and our aim was to evaluate the effect of two naturally occurring monosaccaridic cardiac glycosides-Convallatoxin and Peruvoside on lung cancer cells. Although both drugs had significant anti-proliferative effects on H460 and Calu-3 lung cancer cells, Convallatoxin demonstrated twofold higher activity as compared to Peruvoside using both viability and colony forming assays, suggesting a role for the aglycone region in dictating drug potency. The tumor suppressor p53 was found to be important for action of both drugs-p53-underexpressing cells were less sensitive as compared to p53-positive H460 cells. Further, assessment of p53-underexpressing H460 cells showed that drugs were able to arrest cells in the G0/G1 phase of the cell cycle in a dose-dependent manner. Both drugs significantly inhibited migration and invasion of cancer cells and decreased the viability of floating tumorspheres. An assessment of intracellular pathways indicated that both drugs were able to modulate proteins that are involved in apoptosis, autophagy, cell cycle, proliferation, and EMT. Our data suggest, a promising role for cardiac glycosides in lung cancer treatment, and provides impetus for further investigation of the anti-cancer potential of this class of drugs. J. Cell. Physiol. 232: 2497-2507, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Cardenolides/pharmacology , Cell Movement/drug effects , Cell Proliferation/drug effects , Lung Neoplasms/drug therapy , Strophanthins/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Epithelial-Mesenchymal Transition/drug effects , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Neoplasm Invasiveness , Spheroids, Cellular , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
16.
J Cell Physiol ; 232(8): 2033-2043, 2017 Aug.
Article in English | MEDLINE | ID: mdl-27504932

ABSTRACT

The efficacy of chemotherapy is hindered by both tumor heterogeneity and acquired or intrinsic multi-drug resistance caused by the contribution of multidrug resistance proteins and stemness-associated prosurvival markers. Therefore, targeting multi-drug resistant cells would be much more effective against cancer. In this study, we characterized the chemoresistance properties of adherent (anchorage-dependent) lung H460 and breast MCF-7 cancer cells growing under prolonged periods of serum starvation (PPSS). We found that under PPSS, both cell lines were highly resistant to Paclitaxel, Colchicine, Hydroxyurea, Obatoclax, Wortmannin, and LY294002. Levels of several proteins associated with increased stemness such as Sox2, MDR1, ABCG2, and Bcl-2 were found to be elevated in H460 cells but not in MCF-7 cells. While pharmacological inhibition of either MDR1, ABCG2, Bcl-2 with Verapamil, Sorafenib, or Obatoclax, respectively decreased the levels of their target proteins under routine culture conditions as expected, such inhibition did not reverse PX resistance in PPSS conditions. Paradoxically, treatment with inhibitors in serum-starved conditions produced an elevation of their respective target proteins. In addition, we found that Digitoxin, an FDA approved drug that decrease the viability of cancer cells growing under PPSS, downregulates the expression of Sox2, MDR1, phospho- AKT, Wnt5a/b, and ß-catenin. Our data suggest that PPSS-induced chemoresistance is the result of extensive rewiring of intracellular signaling networks and that multi-resistance can be effectively overcome by simultaneously targeting multiple targets of the rewired network. Furthermore, our PPSS model provides a simple and useful tool to screen drugs for their ability to target multiple pathways of cancer resistance. J. Cell. Physiol. 232: 2033-2043, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Cell Proliferation/drug effects , Culture Media, Serum-Free/metabolism , Digitoxin/pharmacology , Drug Resistance, Multiple/drug effects , Drug Resistance, Neoplasm/drug effects , Lung Neoplasms/drug therapy , Paclitaxel/pharmacology , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Culture Techniques , Cell Survival/drug effects , Drug Resistance, Multiple/genetics , Drug Resistance, Neoplasm/genetics , Drug Screening Assays, Antitumor , Energy Metabolism , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , MCF-7 Cells , Models, Biological , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Signal Transduction/drug effects , Time Factors
17.
Stem Cells Int ; 2016: 5603135, 2016.
Article in English | MEDLINE | ID: mdl-26880969

ABSTRACT

Like with most solid tumors, the presence of a subpopulation of cancer stem cells (CSCs) or cancer stem-like cells (CS-LCs) has been associated with chemoresistance and tumor relapse in lung cancer cells. In the absence of serum, CSCs/CS-LCs have the ability to grow as lung tumorspheres (LTSs), and this system is routinely used for isolation and characterization of putative CSCs/CS-LCs. Methods to isolate LTSs are usually performed in serum-free media supplemented with specific additives such as epidermal growth factor and basic fibroblast growth factor. In this study, we report the generation of LTSs without the addition of any external mitogenic stimulation. LTSs generated in this manner demonstrated several traits usually associated with increased stemness such as elevated expression of the stemness-associated marker Sox2 and increased chemoresistance to conventional anticancer drugs. In addition, we report that the FDA-approved drug Digitoxin, at concentration close to its therapeutic level, decreased the viability of LTSs and downregulated Sox2 independent of the PI3K/AKT pathway. The potential use of LTSs generated without the addition of any external mitogenic stimulation to study the role of specific factor(s) associated with stemness properties is also discussed.

18.
J Cell Physiol ; 231(4): 817-28, 2016 04.
Article in English | MEDLINE | ID: mdl-26264876

ABSTRACT

We have synthesized a novel derivative of Digitoxin, termed "MonoD", which demonstrates cytotoxic effects in lung cancer cells with much higher potency as compared to Digitoxin. Our data show that within 1 h of MonoD treatment, H460 cells showed increased oxidative stress, increased formation of autophagic vacuoles, and increased expression of pro-autophagic markers Beclin-1 and LC3-II. Cells pretreated with MnTBAP, a superoxide scavenger not only lowered superoxide production, but also had lower levels of LC3-II and Beclin-1. Prolonged treatment with MonoD-induced apoptosis in lung cancer cells. We investigated MonoD-dependent regulation of Akt and Bcl2, proteins that are known regulators of both autophagy and apoptosis. Molecular and pharmacologic inhibitors of Bcl2 and Akt, when combined with MonoD, led to higher expression of LC3-II and Beclin-1 as compared to MonoD alone, suggesting a repressive effect for these proteins in MonoD-dependent autophagy. Pretreatment of cells with an autophagy inhibitor repressed the apoptotic potential of MonoD, confirming that early autophagic flux is important to drive apoptosis. Therapeutic entities such as MonoD that target multiple pathways such as autophagy and apoptosis may prove advantageous over current therapies that have unimodal basis for action and may drive sustained tumor regression, which is highly desirable. J. Cell. Physiol. 231: 817-828, 2016. © 2015 Wiley Periodicals, Inc.


Subject(s)
Apoptosis/drug effects , Autophagy/drug effects , Digitoxin/analogs & derivatives , Digitoxin/pharmacology , Lung Neoplasms/pathology , Biomarkers/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Digoxigenin/analogs & derivatives , Digoxigenin/pharmacology , Humans , Lung Neoplasms/metabolism , Models, Biological , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Superoxides/metabolism , Vacuoles/drug effects , Vacuoles/metabolism
19.
Proteomics ; 16(1): 33-46, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26425798

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with a life expectancy of less than 5 years post diagnosis for most patients. Poor molecular characterization of IPF has led to insufficient understanding of the pathogenesis of the disease, resulting in lack of effective therapies. In this study, we have integrated a label-free LC-MS based approach with systems biology to identify signaling pathways and regulatory nodes within protein interaction networks that govern phenotypic changes that may lead to IPF. Ingenuity Pathway Analysis of proteins modulated in response to bleomycin treatment identified PI3K/Akt and Wnt signaling as the most significant profibrotic pathways. Similar analysis of proteins modulated in response to vascular endothelial growth factor (VEGF) inhibitor (CBO-P11) treatment identified natural killer cell signaling and PTEN signaling as the most significant antifibrotic pathways. Mechanistic/mammalian target of rapamycin (mTOR) and extracellular signal-regulated kinase (ERK) were identified to be key mediators of pro- and antifibrotic response, where bleomycin (BLM) treatment resulted in increased expression and VEGF inhibitor treatment attenuated expression of mTOR and ERK. Using a BLM mouse model of pulmonary fibrosis and VEGF inhibitor CBO-P11 as a therapeutic measure, we identified a comprehensive set of signaling pathways and proteins that contribute to the pathogenesis of pulmonary fibrosis that can be targeted for therapy against this fatal disease.


Subject(s)
Bleomycin , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/metabolism , Protein Interaction Maps , Signal Transduction , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Adherens Junctions/metabolism , Animals , Cell Line , Endothelial Growth Factors/pharmacology , Humans , Mice , Mice, Inbred C57BL , PTEN Phosphohydrolase/metabolism , Peptides, Cyclic/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Protein Interaction Maps/drug effects , Protein Serine-Threonine Kinases/metabolism , Proteomics/methods , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Wnt Signaling Pathway/drug effects
20.
Oncol Rep ; 35(2): 878-86, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26573786

ABSTRACT

Despite significant advances in the understanding of lung cancer biology, the prognosis of cancer patients remains poor. Part of the failure of anticancer therapy is due to intratumoral heterogeneity in these patients that limits the efficacy of single agents. Therefore, there is an urgent need for new anticancer drugs or drug combination regimens that possess increased activity against all cellular subtypes found within the tumor. In this study, we evaluated the in vitro antiproliferative activity of the cardiac glycosides (CGs) digitoxin and its synthetic analog MonoD on H460 lung cancer cells grown under different culture conditions. The CGs were tested alone in H460 cells under routine culture as well as in cells growing under short (24-72 h) and prolonged serum starvation (7 days) in order to evaluate the activity of drugs on cancer cells under varied degrees of proliferation. Our results showed that both CGs, and MonoD in particular, have potent antiproliferative activity at clinically relevant concentrations against cells in all the tested culture conditions. In contrast, paclitaxel, hydroxyurea and colchicine were only active in cells growing in routine culture conditions, and relatively inactive in serum-starved conditions. Importantly, both CGs were able to potentiate the effect of clinically relevant concentrations of hydroxyurea or paclitaxel in serum-starved conditions. When paclitaxel was used in combination with CGs, the highest antiproliferative effect was obtained when paclitaxel was administered first, followed by either digitoxin or MonoD. Our results indicate that CGs have potential clinical applications in translational oncology especially in combination with other drugs, and warrants further investigation of CGs in more advanced preclinical models of lung cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Digitoxin/pharmacology , Hexoses/pharmacology , Lung Neoplasms/pathology , Cell Line, Tumor , Drug Synergism , Humans , Hydroxyurea/pharmacology , Inhibitory Concentration 50 , Paclitaxel/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...