Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Biomater Sci Eng ; 6(11): 6069-6075, 2020 11 09.
Article in English | MEDLINE | ID: mdl-33449651

ABSTRACT

Candida albicans forms persistent infections through the formation of biofilms that confer resistance to existing antifungal drugs. Biofilm targeting is therefore a promising strategy to combat Candida albicans infections. The WS2/ZnO nanohybrids exhibits considerably improved antibiofilm activity and inhibited the biofilm formation by 91%, which is quite better than that for pristine WS2, which is only 74%. The physical blend prepared by mixing WS2 nanosheets and WS2/ZnO in the ratio of 70:30 showed an antibiofilm activity of 58%, which was intermediate to that observed for pristine materials. The as-synthesized nanohybrid also demonstrates dose-dependent antifungal activity as calculated using the disc diffusion test. WS2/ZnO nanohybrid shows 1.5 times higher activity compared to pristine WS2 nanosheets suggesting that the nanohybrid materials are more effective as novel antifungal materials.


Subject(s)
Candidiasis , Zinc Oxide , Antifungal Agents/pharmacology , Biofilms , Candida albicans , Candidiasis/drug therapy , Humans , Zinc Oxide/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...