Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther Nucleic Acids ; 35(2): 102193, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38745855

ABSTRACT

Use of tumor-suppressive microRNAs (miRNAs) as anti-cancer agents is hindered by the lack of effective delivery vehicles, entrapment of the miRNA within endocytic compartments, and rapid degradation of miRNA by nucleases. To address these issues, we developed a miRNA delivery strategy that includes (1) a targeting ligand, (2) an endosomal escape agent, nigericin and (3) a chemically modified miRNA. The delivery ligand, DUPA (2-[3-(1,3-dicarboxy propyl) ureido] pentanedioic acid), was selected based on its specificity for prostate-specific membrane antigen (PSMA), a receptor routinely upregulated in prostate cancer-one of the leading causes of cancer death among men. DUPA was conjugated to the tumor suppressive miRNA, miR-34a (DUPA-miR-34a) based on the ability of miR-34a to inhibit prostate cancer cell proliferation. To mediate endosomal escape, nigericin was incorporated into the complex, resulting in DUPA-nigericin-miR-34a. Both DUPA-miR-34a and DUPA-nigericin-miR-34a specifically bound to, and were taken up by, PSMA-expressing cells in vitro and in vivo. And while both DUPA-miR-34a and DUPA-nigericin-miR-34a downregulated miR-34a target genes, only DUPA-nigericin-miR-34a decreased cell proliferation in vitro and delayed tumor growth in vivo. Tumor growth was further reduced using a fully modified version of miR-34a that has significantly increased stability.

2.
Bio Protoc ; 14(8): e4975, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38686344

ABSTRACT

The field of oligonucleotide therapeutics is rapidly advancing, particularly for combating orphan diseases and cancer. However, the intrinsic instability of oligonucleotides, especially RNA, poses a substantial challenge in the face of the harsh conditions encountered intracellularly and in circulation. Therefore, evaluating the stability of oligos in serum is of great significance when developing oligonucleotide therapeutics. This protocol outlines a dependable and reproducible method for preparing oligonucleotide duplexes, coupled with confirmation by gel electrophoresis. Subsequently, the protocol defines a mechanism to assess the stability of the oligo duplexes in serum. This protocol seeks to establish a standardized reference for researchers, enabling them to compare the impact of various modifications on oligo stability and assess the degradation kinetics effectively. Key features • Adaptable for use with small interfering RNA (siRNA), microRNA (miRNA), antisense oligonucleotides (ASOs), and other unmodified and modified oligonucleotides. • Does not necessitate any Biological Safety Level clearance and offers a rapid, cost-effective, and entirely in vitro procedure. • Allows researchers to evaluate multiple modification patterns that, when coupled with targeting activity, allow for selecting the best modification pattern prior to in vivo analysis.

3.
Oncogene ; 42(40): 2985-2999, 2023 09.
Article in English | MEDLINE | ID: mdl-37666938

ABSTRACT

Altered by defects in p53, epigenetic silencing, and genomic loss, the microRNA miR-34a represents one of the most clinically relevant tumor-suppressive microRNAs. Without question, a striking number of patients with cancer would benefit from miR-34a replacement, if poor miR-34a stability, non-specific delivery, and delivery-associated toxicity could be overcome. Here, we highlight a fully modified version of miR-34a (FM-miR-34a) that overcomes these hurdles when conjugated to a synthetically simplistic ligand. FM-miR-34a is orders of magnitude more stable than a partially modified version, without compromising its activity, leading to stronger repression of a greater number of miR-34a targets. FM-miR-34a potently inhibited proliferation and invasion, and induced sustained downregulation of endogenous target genes for >120 h following in vivo delivery. In vivo targeting was achieved through conjugating FM-miR-34a to folate (FM-FolamiR-34a), which inhibited tumor growth leading to complete cures in some mice. These results have the ability to revitalize miR-34a as an anti-cancer agent, providing a strong rationale for clinical testing.


Subject(s)
MicroRNAs , Neoplasms , Humans , Animals , Mice , MicroRNAs/genetics , Neoplasms/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Cell Proliferation/genetics
4.
Animal Model Exp Med ; 5(1): 27-37, 2022 02.
Article in English | MEDLINE | ID: mdl-35229999

ABSTRACT

Alzheimer's disease and Parkinson's disease are two of the most prevalent and disabling neurodegenerative diseases globally. Both are proteinopathic conditions and while occasionally inherited, are largely sporadic in nature. Although the advances in our understanding of the two have been significant, they are far from complete and neither diagnosis nor the current practices in treatment and rehabilitation is adequately helpful. Animal models have historically found application as testing beds for novel therapeutics and continue to be valuable aids in pharmacological research. This review chronicles the development of those models in the context of Alzheimer's and Parkinson's disease, and highlights the shifting paradigms in studying two human-specific conditions in non-human organisms.


Subject(s)
Alzheimer Disease , Parkinson Disease , Alzheimer Disease/diagnosis , Animals , Models, Animal , Parkinson Disease/therapy
5.
J Food Sci Technol ; 54(11): 3666-3678, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29051662

ABSTRACT

Sprouts of cereal grains, such as barley (Hordeum vulgare L.), are a good source of beneficial phenolic bioactives. Such health relevant phenolic bioactives of cereal sprouts can be targeted to manage chronic hyperglycemia and oxidative stress commonly associated with type 2 diabetes (T2D). Therefore improving phenolic bioactives by stimulating plant endogenous defense responses such as protective pentose phosphate pathway (PPP) during sprouting has significant merit. Based on this metabolic rationale, this study aimed to enhance phenolic bioactives and associated antioxidant and anti-hyperglycemic functions in dark germinated barley sprouts using exogenous elicitor treatments. Dark-germinated sprouts of two malting barley cultivars (Pinnacle and Celebration), treated with chitosan oligosaccharide (COS) and marine protein hydrolysate (GP), were evaluated. Total soluble phenolic content (TSP), phenolic acid profiles, total antioxidant activity (TA) and in vitro inhibitory activities of hyperglycemia relevant α-amylase and α-glucosidase enzymes of the dark germinated barley sprouts were evaluated at day 2, 4, and 6 post elicitor treatments. Overall, TSP content, TA, and α-amylase inhibitory activity of dark germinated barley sprouts decreased, while α-glucosidase inhibitory activity and gallic acid content increased from day 2 to day 6. Among barley cultivars, high phenolic antioxidant-linked anti-hyperglycemic bioactives were observed in Celebration. Furthermore, GP and COS seed elicitor treatments in selective doses improved T2D relevant phenolic-linked anti-hyperglycemic bioactives of barley spouts at day 6. Therefore, such seed elicitation approach can be strategically used to develop bioactive enriched functional food ingredients from cereal sprouts targeting chronic hyperglycemia and oxidative stress linked to T2D.

SELECTION OF CITATIONS
SEARCH DETAIL
...