Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Infect Dis ; 76(3): e526-e529, 2023 02 08.
Article in English | MEDLINE | ID: mdl-35737946

ABSTRACT

We enrolled 7 individuals with recurrent symptoms or antigen test conversion following nirmatrelvir-ritonavir treatment. High viral loads (median 6.1 log10 copies/mL) were detected after rebound for a median of 17 days after initial diagnosis. Three had culturable virus for up to 16 days after initial diagnosis. No known resistance-associated mutations were identified.


Subject(s)
COVID-19 , Humans , COVID-19 Drug Treatment , Ritonavir/therapeutic use , Mutation
2.
JCI Insight ; 7(19)2022 10 10.
Article in English | MEDLINE | ID: mdl-36214224

ABSTRACT

Protective immunity against SARS-CoV-2 infection after COVID-19 vaccination may differ by variant. We enrolled vaccinated (n = 39) and unvaccinated (n = 11) individuals with acute, symptomatic SARS-CoV-2 Delta or Omicron infection and performed SARS-CoV-2 viral load quantification, whole-genome sequencing, and variant-specific antibody characterization at the time of acute illness and convalescence. Viral load at the time of infection was inversely correlated with antibody binding and neutralizing antibody responses. Across all variants tested, convalescent neutralization titers in unvaccinated individuals were markedly lower than in vaccinated individuals. Increases in antibody titers and neutralizing activity occurred at convalescence in a variant-specific manner. For example, among individuals infected with the Delta variant, neutralizing antibody responses were weakest against BA.2, whereas infection with Omicron BA.1 variant generated a broader response against all tested variants, including BA.2.


Subject(s)
AIDS Vaccines , COVID-19 , Influenza Vaccines , Papillomavirus Vaccines , Respiratory Syncytial Virus Vaccines , SAIDS Vaccines , Antibodies, Neutralizing , Antibodies, Viral , BCG Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Convalescence , Diphtheria-Tetanus-Pertussis Vaccine , Humans , Measles-Mumps-Rubella Vaccine , Neutralization Tests , SARS-CoV-2
4.
medRxiv ; 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35262089

ABSTRACT

Clinical features of SARS-CoV-2 Omicron variant infection, including incubation period and transmission rates, distinguish this variant from preceding variants. However, whether the duration of shedding of viable virus differs between omicron and previous variants is not well understood. To characterize how variant and vaccination status impact shedding of viable virus, we serially sampled symptomatic outpatients newly diagnosed with COVID-19. Anterior nasal swabs were tested for viral load, sequencing, and viral culture. Time to PCR conversion was similar between individuals infected with the Delta and the Omicron variant. Time to culture conversion was also similar, with a median time to culture conversion of 6 days (interquartile range 4-8 days) in both groups. There were also no differences in time to PCR or culture conversion by vaccination status.

5.
medRxiv ; 2022 Mar 03.
Article in English | MEDLINE | ID: mdl-35262094

ABSTRACT

There is increasing evidence that the risk of SARS-CoV-2 infection among vaccinated individuals is variant-specific, suggesting that protective immunity against SARS-CoV-2 may differ by variant. We enrolled vaccinated (n = 39) and unvaccinated (n = 11) individuals with acute, symptomatic SARS-CoV-2 Delta or Omicron infection and performed SARS-CoV-2 viral load quantification, whole-genome sequencing, and variant-specific antibody characterization at the time of acute illness and convalescence. Viral load at the time of infection was inversely correlated with antibody binding and neutralizing antibody responses. Increases in antibody titers and neutralizing activity occurred at convalescence in a variant-specific manner. Across all variants tested, convalescent neutralization titers in unvaccinated individuals were markedly lower than in vaccinated individuals. For individuals infected with the Delta variant, neutralizing antibody responses were weakest against BA.2, whereas infection with Omicron BA.1 variant generated a broader response against all tested variants, including BA.2.

6.
Arterioscler Thromb Vasc Biol ; 39(8): 1588-1601, 2019 08.
Article in English | MEDLINE | ID: mdl-31294624

ABSTRACT

OBJECTIVE: MR (mineralocorticoid receptor) activation is associated with cardiovascular ischemia in humans. This study explores the role of the MR in atherosclerotic mice of both sexes and identifies a sex-specific role for endothelial cell (EC)-MR in vascular inflammation. Approach and Results: In the AAV-PCSK9 (adeno-associated virus-proprotein convertase subtilisin/kexin type 9) mouse atherosclerosis model, MR inhibition attenuated vascular inflammation in males but not females. Further studies comparing male and female littermates with intact MR or EC-MR deletion revealed that although EC-MR deletion did not affect plaque size in either sex, it reduced aortic arch inflammation specifically in male mice as measured by flow cytometry. Moreover, MR-intact females had larger plaques but were protected from vascular inflammation compared with males. Intravital microscopy of the mesenteric vasculature demonstrated that EC-MR deletion attenuated TNFα (tumor necrosis factor α)-induced leukocyte slow rolling and adhesion in males, while females exhibited fewer leukocyte-endothelial interactions with no additional effect of EC-MR deletion. These effects corresponded with decreased TNFα-induced expression of the endothelial adhesion molecules ICAM-1 (intercellular adhesion molecule-1) and E-selectin in males with EC-MR deletion compared with MR-intact males and females of both genotypes. These observations were also consistent with MR and estrogen regulation of ICAM-1 transcription and E-selectin expression in primary cultured mouse ECs and human umbilical vein ECs. CONCLUSIONS: In male mice, EC-MR deletion attenuates leukocyte-endothelial interactions, plaque inflammation, and expression of E-selectin and ICAM-1, providing a potential mechanism by which the MR promotes vascular inflammation. In females, plaque inflammation and leukocyte-endothelial interactions are decreased relative to males and EC-MR deletion is not protective.


Subject(s)
Atherosclerosis/complications , Endothelial Cells/physiology , Receptors, Mineralocorticoid/physiology , Vasculitis/etiology , Animals , Cells, Cultured , E-Selectin/genetics , Female , Intercellular Adhesion Molecule-1/genetics , Leukocytes/physiology , Male , Mice , Mice, Inbred C57BL , Sex Characteristics
7.
Front Cardiovasc Med ; 5: 81, 2018.
Article in English | MEDLINE | ID: mdl-30038907

ABSTRACT

Objective: Elevated levels of the hormone aldosterone are associated with increased risk of myocardial infarction and stroke in humans and increased progression and inflammation of atherosclerotic plaques in animal models. Aldosterone acts through the mineralocorticoid receptor (MR) which is expressed in vascular smooth muscle cells (SMCs) where it promotes SMC calcification and chemokine secretion in vitro. The objective of this study is to explore the role of the MR specifically in SMCs in the progression of atherosclerosis and the associated vascular inflammation in vivo in the apolipoprotein E knockout (ApoE-/-) mouse model. Methods and Results: Male ApoE-/- mice were bred with mice in which MR could be deleted specifically from SMCs by tamoxifen injection. The resulting atheroprone SMC-MR-KO mice were compared to their MR-Intact littermates after high fat diet (HFD) feeding for 8 or 16 weeks or normal diet for 12 months. Body weight, tail cuff blood pressure, heart and spleen weight, and serum levels of glucose, cholesterol, and aldosterone were measured for all mice at the end of the treatment period. Serial histologic sections of the aortic root were stained with Oil Red O to assess plaque size, lipid content, and necrotic core area; with PicroSirius Red for quantification of collagen content; by immunofluorescent staining with anti-Mac2/Galectin-3 and anti-smooth muscle α-actin antibodies to assess inflammation and SMC marker expression; and with Von Kossa stain to detect plaque calcification. In the 16-week HFD study, these analyses were also performed in sections from the brachiocephalic artery. Flow cytometry of cell suspensions derived from the aortic arch was also performed to quantify vascular inflammation after 8 and 16 weeks of HFD. Deletion of the MR specifically from SMCs did not significantly change plaque size, lipid content, necrotic core, collagen content, inflammatory staining, actin staining, or calcification, nor were there differences in the extent of vascular inflammation between MR-Intact and SMC-MR-KO mice in the three experiments. Conclusion: SMC-MR does not directly contribute to the formation, progression, or inflammation of atherosclerotic plaques in the ApoE-/- mouse model of atherosclerosis. This indicates that the MR in non-SMCs mediates the pro-atherogenic effects of MR activation.

SELECTION OF CITATIONS
SEARCH DETAIL
...