Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 13(4): e0195073, 2018.
Article in English | MEDLINE | ID: mdl-29672557

ABSTRACT

This study focuses on the possible uses of physics engines, and more specifically the Bullet physics library, to simulate granular systems. Physics engines are employed extensively in the video gaming, animation and movie industries to create physically plausible scenes. They are designed to deliver a fast, stable, and optimal simulation of certain systems such as rigid bodies, soft bodies and fluids. This study focuses exclusively on simulating granular media in the context of rigid body dynamics with the Bullet physics library. The first step was to validate the results of the simulations of direct shear testing on uniform-sized metal beads on the basis of laboratory experiments. The difference in the average angle of mobilized frictions was found to be only 1.0°. In addition, a very close match was found between dilatancy in the laboratory samples and in the simulations. A comprehensive study was then conducted to determine the failure and post-failure mechanism. We conclude with the presentation of a simulation of a direct shear test on real soil which demonstrated that Bullet has all the capabilities needed to be used as software for simulating granular systems.


Subject(s)
Models, Theoretical , Physics , Shear Strength , Algorithms , Computer Simulation , Soil
2.
Mater Res Lett ; 5(3): 135-143, 2017 May.
Article in English | MEDLINE | ID: mdl-28382229

ABSTRACT

We used a novel diffraction-based method to extract the local, atomic-level elastic strain in nanoscale amorphous TiAl films during in situ transmission electron microscopy deformation, while simultaneously measuring the macroscopic strain. The complementary strain measurements revealed significant anelastic deformation, which was independently confirmed by strain rate experiments. Furthermore, the distribution of first nearest-neighbor distances became narrower during loading and permanent changes were observed in the atomic structure upon unloading, even in the absence of macroscopic plasticity. The results demonstrate the capability of in situ electron diffraction to probe structural rearrangements and decouple elastic and anelastic deformation in metallic glasses.

3.
Soft Matter ; 12(26): 5818-23, 2016 Jun 29.
Article in English | MEDLINE | ID: mdl-27301750

ABSTRACT

The flow of liquid polydimethylsiloxane (PDMS, Dow Corning Sylgard 184, 10 : 1 base to cross-linker ratio) in open, rectangular silicon microchannels, with and without a coating (100 nm) of poly-tetra-fluoro-ethylene (PTFE), was studied. Photolithographic patterning and etching of silicon wafers was used to create microchannels with a range of widths (∼5-50 µm) and depths (5-20 µm). Experimental PDMS flow rates in both PTFE-coated and uncoated channels were compared to an analytical model based on the work of Lucas and Washburn. The experimental flow rates matched the predicted flow rates reasonably well when the channel aspect ratio (width to depth), p, was less than 2. For channels with p > 2, the observed flow rates progressively lagged model predictions with increasing p. The experimental data, including zero flow rates in certain high aspect ratio PTFE-coated channels, can largely be explained by changes in the front and upper meniscus morphology of the flow as the channel aspect ratio is varied. The results strongly suggest that meniscus morphology needs to be taken into account to accurately model capillary flow in microchannels, especially those with large aspect ratios.

SELECTION OF CITATIONS
SEARCH DETAIL
...