Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Radiat Isot ; 201: 111035, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37741070

ABSTRACT

In this research, a ThErmal Neutron Imaging System (TENIS) consisting of two perpendicular sets of plastic scintillator arrays for boron neutron capture therapy (BNCT) application has been investigated in a completely different approach for neutron energy spectrum unfolding. TENIS provides a thermal neutron map based on the detection of 2.22 MeV gamma-rays resulting from 1H(nth, γ)2D reactions, but in the present study, the 70-pixel thermal neutron images have been used as input data for unfolding the energy spectrum of incident neutrons. Having generated the thermal neutron images for 109 incident mono-energetic neutrons, a 70 × 109 response matrix has been generated using the MCNPX2.6 code for feeding into the artificial neural network tools of MATLAB. The errors of the final results for mono-energetic neutron sources are less than 10% and the root mean square error (RMSE) for the unfolded neutron spectrum of 252Cf is about 0.01. The agreement of the unfolding results for mono-energetic and 252Cf neutron sources confirms the performance of the TENIS system as a neutron spectrometer.

2.
Radiat Prot Dosimetry ; 151(3): 580-5, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22434921

ABSTRACT

A couple of 2-inch by 2-inch right cylinder sodium iodide scintillators and an Am-Be radioisotope neutron source have been used in a neutron porosity well-logging tool to explore the variation of hydrogen contents in a prototype formation. Both Monte Carlo N-particle transport code simulation and experimental results of the near- to far-detector responses confirm the reliable sensitivity of proposed tool to the formation porosity.


Subject(s)
Americium/chemistry , Beryllium/chemistry , Boron/chemistry , Neutrons , Scintillation Counting/instrumentation , Sodium Iodide/chemistry , Computer Simulation , Hydrogen , Monte Carlo Method , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...