Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 7738, 2023 05 12.
Article in English | MEDLINE | ID: mdl-37173354

ABSTRACT

Cold atmospheric plasma has been developed and utilized as a novel technique for skin rejuvenation because of its various effects on cells and living things. This study investigated the accuracy of this claim and any possible side effects of using spark plasma to rejuvenate skin. The present work is the first quantitative investigation using animal models. 12 Wistar rats were divided into two groups for this investigation. To compare the skin's natural process with the treated skin, the first group underwent a single session of plasma therapy, while the second group served as the control group. The back of the necks of the samples was shaved for 20 cm. Before beginning treatment, the MPA9 multifunctional skin tester was used to determine the melanin index, erythema index, and transepidermal water loss (TEWL). The skin's thickness and density were assessed using sonography, and its elasticity index was calculated using a Cutometer. The samples were exposed to plasma radiation in the designated area (in a triangular pattern). The abovementioned signs were examined immediately after the following therapy and at the weekly appointment 2-4 weeks later. Optical spectroscopy was also used to demonstrate the presence of active species. In this study, we found that a plasma spark therapy session significantly boosts skin elasticity, and the ultrasound results revealed a significantly increased skin thickness and density. The plasma increased the amount of skin surface evaporation, erythema, and melanin immediately following the treatment. However, 4 weeks later, it recovered to its former state and did not differ significantly from before the therapy.


Subject(s)
Melanins , Skin , Animals , Rats , Rats, Wistar , Erythema/etiology , Elasticity , Biometry
2.
Tissue Cell ; 74: 101717, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34973574

ABSTRACT

Tissue Engineering is a branch of regenerative medical technology which helps replace damaged tissue using appropriate scaffolding, living cells, and growth factors. Using tissue engineering products can be a promising method for treating skin lesions such as wounds and deep burns. The interaction and interconnection of cells within the bio-culture medium or within a three-dimensional scaffold provides the conditions for tissue regeneration and subsequent healing of skin wounds. Tissue engineering in the field of dermatology has evolved over time from a single application of skin cells or biopolymer scaffolds to the use of cell and scaffold combinations for the treatment, repair, and closure of acute and chronic skin wounds. It has evolved. This technology has reached a point where most products are accepted, and the body rejects a small number, which strengthens the tissue engineering market. In this article, we aimed to review and study the market of this field by reviewing various articles on tissue engineering in the field of dermatology. Tissue-engineered skin substitutes are future options for wound healing and tissue regeneration strategies.


Subject(s)
Biocompatible Materials/chemistry , Burns , Skin/metabolism , Tissue Engineering , Tissue Scaffolds/chemistry , Wound Healing , Burns/metabolism , Burns/therapy , Dermatology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...