Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 11(49): 45489-45497, 2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31714730

ABSTRACT

Stainless steels used as metal implants in the medical field have been attracting intensive attention due to their advantages in mechanical properties, anticorrosion properties, and cost effectiveness. Good osteoconductivity, low toxicity, and low inflammatory reactions are essential to stainless steel implant in vivo. However, there are few cases about the surface modification performed for enhancing the corrosion resistance, and there are few researches on the relationship between the surface properties of stainless steel and osteoconductivity when used as implants. This study employed 316L and 304 stainless steel for surface modification including hydrothermal treatment after acid immersion and anodizing treatment, while the as-polished stainless steel was used as a control group. Anticorrosion properties, protein adsorption properties, osteoconductivity, and anti-inflammation property of these specimens were intensively investigated in vitro and in vivo. It was found that specimen subjected to hydrothermal treatment at 230 °C after immersion in 18 M H2SO4 had the lowest metal ions release, while the anodized specimen had the highest release of Fe and Cr due to corrosion. The protein adsorption amount of the specimens was positively related to the osteoconductivity, suggesting protein adsorption is the prerequisite for good osteoconductivity. The osteoconductivity decreased first and then increased with the increase in water contact angle (WCA) value. The specimen with the surface modified by hydrothermal treatment after acid immersion had the highest protein adsorption amount and the best osteoconductivity due to its superhydrophilicity property. The protein adsorption capacity and osteoconductivity for stainless steel tended to be the same as Ti alloys studied before, indicating the surface hydrophilicity property of the implanted metals was the dominant factor affecting the osteoconductivity. From an anti-inflammation perspective, the specimen with the surface modified by hydrothermal treatment after acid immersion also exhibited the lowest thickness of the fibrous capsule membrane from the in vivo tests, suggesting its advantageous biocompatibility. Thus, this research can provide new insight into the application of austenitic stainless steel for implanted material purposes.


Subject(s)
Biocompatible Materials/pharmacology , Bone Regeneration/drug effects , Prostheses and Implants/adverse effects , Stainless Steel/pharmacology , Adsorption , Biocompatible Materials/chemistry , Corrosion , Humans , Hydrophobic and Hydrophilic Interactions , Inflammation/microbiology , Materials Testing , Nickel/chemistry , Nickel/therapeutic use , Prostheses and Implants/microbiology , Stainless Steel/chemistry , Surface Properties , Titanium/chemistry , Titanium/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...