Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Intell Neurosci ; 2022: 5898479, 2022.
Article in English | MEDLINE | ID: mdl-35978896

ABSTRACT

Tumour region extraction (RE) method identifies the area of interest in MR imaging as it also highlights tumour boundaries. Some other intensities are existing, they are not visible but have their existence in region, and this region is called growing region. Such region is to be tumour region. Due to the variation of intensities in MRI images, tumour visibility becomes uncleared. Tumour intensity variations (tumour tissues) mix with normal brain tissues. In the light of above circumstance, tumour growing region becomes challenge. The goal of work is to extract the region of interest with confidence. The objective of the study is to develop the region of interest of brain tumour MRI image method by using confidence score for identifying the variation of intensity. The significance of work is based on identification of region of interest (tumour region). Confidence score is measured through pattern of intensities of MRI image. Similar patterns of brain tumour intensities are identified. Each pattern of intensities is adjusted with certain scale, and then biggest blob is analysed. Various biggest area blobs are combined, and resultant biggest blob is formed. In fact, resultant area blob is a combination of different patterns. Each pattern is assigned with particular colour. These colours highlight the growing region. Further, a contour is detected around the tumour boundaries. With combination of region scale fitting and contour detection (CD), tumour boundaries are further separated from normal tissues. Hence, the confidence score (CS) is formed from CD. CS is further converted to confidence region (CR). Conversion to CR is performed though confidence interval (CI). CI is based on defined conditions. In such conditions, different probabilities are considered. Probability identifies the region. Source of region formation is pixels; these pixels highlight tumour core significantly. This CR is obtained through checking standard deviation and statistical evaluation using confidence interval. Hence, region-of-interest pixels are identifying the CR. CR is evaluated through 97% Dice over index (DOI), 94% Jacquard, MSE 1.24, and PSNR 17.45. Value of testing parameter from benchmark study was JI, DOI, and MSE, PSNR : JI was 31.5%, DOI was 47.3%, MSE was 2.5 dB, and PSNR was 40 dB. The parameters are measured for the complex images; contribution parameter classifies the mean pixel values and deviating pixel values, and the classification of the pixel value is like to be termed as intensities. Mentioned classification extracts the variation of intensity pixels accurately; then, algorithm is highlighting the region as compared to the normal tumour cells.


Subject(s)
Brain Neoplasms , Magnetic Resonance Imaging , Algorithms , Brain Neoplasms/diagnostic imaging , Humans , Image Processing, Computer-Assisted/methods
2.
Contrast Media Mol Imaging ; 2022: 1541980, 2022.
Article in English | MEDLINE | ID: mdl-35919500

ABSTRACT

Modalities like MRI give information about organs and highlight diseases. Organ information is visualized in intensities. The segmentation method plays an important role in the identification of the region of interest (ROI). The ROI can be segmented from the image using clustering, features, and region extraction. Segmentation can be performed in steps; firstly, the region is extracted from the image. Secondly, feature extraction performed, and better features are selected. They can be shape, texture, or intensity. Thirdly, clustering segments the shape of tumor, tumor has specified shape, and shape is detected by feature. Clustering consists of FCM, K-means, FKM, and their hybrid. To support the segmentation, we conducted three studies (region extraction, feature, and clustering) which are discussed in the first line of this review paper. All these studies are targeting MRI as a modality. MRI visualization proved to be more accurate for the identification of diseases compared with other modalities. Information of the modality is compromised due to low pass image. In MRI Images, the tumor intensities are variable in tumor areas as well as in tumor boundaries.


Subject(s)
Brain Neoplasms , Image Processing, Computer-Assisted , Algorithms , Brain Neoplasms/diagnostic imaging , Fuzzy Logic , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods
3.
Sensors (Basel) ; 22(9)2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35590921

ABSTRACT

Increasing importance in the field of artificial intelligence has led to huge progress in remote sensing. Deep learning approaches have made tremendous progress in hyperspectral image (HSI) classification. However, the complexity in classifying the HSI data using a common convolutional neural network is still a challenge. Further, the network architecture becomes more complex when different spatial-spectral feature information is extracted. Usually, CNN has a large number of trainable parameters, which increases the computational complexity of HSI data. In this paper, an optimized squeeze-excitation AdaBound dense network (SE-AB-DenseNet) is designed to emphasize the significant spatial-spectral features of HSI data. The dense network is combined with the AdaBound and squeeze-excitation modules to give lower computation costs and better classification performance. The AdaBound optimizer gives the proposed model the ability to improve its stability and enhance its classification accuracy by approximately 2%. Additionally, the cutout regularization technique is used for HSI spatial-spectral classification to overcome the problem of overfitting. The experiments were carried out on two commonly used hyperspectral datasets (Indian Pines and Salinas). The experiment results on the datasets show a competitive classification accuracy when compared with state-of-the-art methods with limited training samples. From the SE-AB-DenseNet with the cutout model, the overall accuracies for the Indian Pines and Salinas datasets were observed to be 99.37 and 99.78, respectively.


Subject(s)
Artificial Intelligence , Neural Networks, Computer , Telemetry
4.
Biomed Res Int ; 2022: 8925930, 2022.
Article in English | MEDLINE | ID: mdl-35257012

ABSTRACT

COVID-19 is a fatal disease caused by the SARS-CoV-2 virus that has caused around 5.3 Million deaths globally as of December 2021. The detection of this disease is a time taking process that have worsen the situation around the globe, and the disease has been identified as a world pandemic by the WHO. Deep learning-based approaches are being widely used to diagnose the COVID-19 cases, but the limitation of immensity in the publicly available dataset causes the problem of model over-fitting. Modern artificial intelligence-based techniques can be used to increase the dataset to avoid from the over-fitting problem. This research work presents the use of various deep learning models along with the state-of-the-art augmentation methods, namely, classical and generative adversarial network- (GAN-) based data augmentation. Furthermore, four existing deep convolutional networks, namely, DenseNet-121, InceptionV3, Xception, and ResNet101 have been used for the detection of the virus in X-ray images after training on augmented dataset. Additionally, we have also proposed a novel convolutional neural network (QuNet) to improve the COVID-19 detection. The comparative analysis of achieved results reflects that both QuNet and Xception achieved high accuracy with classical augmented dataset, whereas QuNet has also outperformed and delivered 90% detection accuracy with GAN-based augmented dataset.


Subject(s)
COVID-19/diagnostic imaging , Deep Learning , Image Processing, Computer-Assisted/methods , Computer Graphics , Databases, Factual , Humans , Neural Networks, Computer , Pneumonia/diagnostic imaging , Radiography
5.
J Healthc Eng ; 2022: 6952304, 2022.
Article in English | MEDLINE | ID: mdl-35186235

ABSTRACT

One of the deadliest diseases is skin cancer, especially melanoma. The high resemblance between different skin lesions such as melanoma and nevus in the skin colour images increases the complexity of identification and diagnosis. An efficient automated early detection system for skin cancer detection is essential in order to save human lives, time, and effort. In this article, an automatic skin lesion classification system using a pretrained deep learning network and transfer learning was proposed. Here, diagnosing melanoma in premature stages, a detection system has been designed which contains the following digital image processing techniques. First, dermoscopy images of skin were taken and this is subjected to a preprocessing step for noise removal and postprocessing step for image enhancement. Then the processed image undergoes image segmentation using k-means and modified k-means clustering. Second, using feature extraction technology, Gray Level Co-occurrence Matrix, and first order statistics, characteristics are extracted. Features are selected on the basis of Harris Hawks optimization (HHO). Finally, various classifiers are used for predicting the stages and efficiency of the proposed work. Measures of well-known quantities, sensitivity, precision, accuracy, and specificity are used in assessing the efficiency of the suggested method, where higher values were obtained. Compared to the current methods, it is found that the classification rate exceeded the output of the current approaches in the performance of the proposed approach.


Subject(s)
Melanoma , Skin Neoplasms , Algorithms , Dermoscopy/methods , Humans , Image Processing, Computer-Assisted/methods , Melanoma/diagnostic imaging , Melanoma/pathology , Neural Networks, Computer , Skin Neoplasms/diagnostic imaging
6.
J Healthc Eng ; 2022: 2693621, 2022.
Article in English | MEDLINE | ID: mdl-35047149

ABSTRACT

Radiology is a broad subject that needs more knowledge and understanding of medical science to identify tumors accurately. The need for a tumor detection program, thus, overcomes the lack of qualified radiologists. Using magnetic resonance imaging, biomedical image processing makes it easier to detect and locate brain tumors. In this study, a segmentation and detection method for brain tumors was developed using images from the MRI sequence as an input image to identify the tumor area. This process is difficult due to the wide variety of tumor tissues in the presence of different patients, and, in most cases, the similarity within normal tissues makes the task difficult. The main goal is to classify the brain in the presence of a brain tumor or a healthy brain. The proposed system has been researched based on Berkeley's wavelet transformation (BWT) and deep learning classifier to improve performance and simplify the process of medical image segmentation. Significant features are extracted from each segmented tissue using the gray-level-co-occurrence matrix (GLCM) method, followed by a feature optimization using a genetic algorithm. The innovative final result of the approach implemented was assessed based on accuracy, sensitivity, specificity, coefficient of dice, Jaccard's coefficient, spatial overlap, AVME, and FoM.


Subject(s)
Brain Neoplasms , Deep Learning , Algorithms , Brain/diagnostic imaging , Brain Neoplasms/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods , Wavelet Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...