Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 10(11)2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33182626

ABSTRACT

Nanostructured thin films of Co-doped zinc sulfide were synthesized through femtosecond pulsed laser deposition. The scheme involved ablation of physically mixed Co and ZnS with pairs of ultrashort pulses separated in time in the 0-300 ps range. In situ monitorization of the deposition process was carried out through a simultaneous reflectivity measurement. The crystallinity of generated nanoparticles and the inclusion of Co in the ZnS lattice is demonstrated by transmission electron microscopy and energy dispersive X-ray microanalysis (TEM-EDX) characterization. Surface morphology, Raman response, and photoluminescence of the films have also been assessed. The role of interpulse temporal separation is most visible in the thickness of the films obtained at the same total fluence, with much thicker films deposited with short delays than with individual uncoupled pulses. The proportion of Co in the synthesized doped ZnS nanoparticles is found to be substantially lower than the original proportion, and practically independent on interpulse delay.

2.
Talanta ; 185: 196-202, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29759189

ABSTRACT

A set of 10 honeys comprising a diverse range of botanical origins have been successfully characterized through fluorescence spectroscopy using inexpensive light-emitting diodes (LEDs) as light sources. It has been proven that each LED-honey combination tested originates a unique emission spectrum, which enables the authentication of every honey, being able to correctly label it with its botanical origin. Furthermore, the analysis was backed up by a mathematical analysis based on partial least square models which led to a correct classification rate of each type of honey of over 95%. Finally, the same approach was followed to analyze rice syrup, which is a common honey adulterant that is challenging to identify when mixed with honey. A LED-dependent and unique fluorescence spectrum was found for the syrup, which presumably qualifies this approach for the design of uncomplicated, fast, and cost-effective quality control and adulteration assessing tools for different types of honey.


Subject(s)
Fluorescence , Honey/analysis , Least-Squares Analysis , Oryza/chemistry , Spectrometry, Fluorescence
3.
ACS Omega ; 1(3): 388-395, 2016 Sep 30.
Article in English | MEDLINE | ID: mdl-27713930

ABSTRACT

The search for efficient plasmonic photothermal therapies using nonharmful pulse laser irradiation at the near-infrared (NIR) is fundamental for biomedical cancer research. Therefore, the development of novel assembled plasmonic gold nanostructures with the aim of reducing the applied laser power density to a minimum through hot-spot-mediated cell photothermolysis is an ongoing challenge. We demonstrate that gold nanorods (Au NRs) functionalized at their tips with a pH-sensitive ligand assemble into oligomers within cell lysosomes through hydrogen-bonding attractive interactions. The unique intracellular features of the plasmonic oligomers allow us to significantly reduce the femtosecond laser power density and Au NR dose while still achieving excellent cell killing rates. The formation of gold tip-to-tip oligomers with longitudinal localized surface plasmon resonance bands at the NIR, obtained from low-aspect-ratio Au NRs close in resonance with 800 nm Ti:sapphire 90 fs laser pulses, was found to be the key parameter for realizing the enhanced plasmonic photothermal therapy.

4.
Phys Chem Chem Phys ; 18(5): 3522-9, 2016 Feb 07.
Article in English | MEDLINE | ID: mdl-26751831

ABSTRACT

Femtosecond lasers, used as tools to investigate the ablation dynamics of solids, can help to develop strategies to control the deposition of nanomaterials by pulsed laser ablation. In this work, Co/ZnS targets, potential candidates for the synthesis of diluted magnetic semiconductor materials, are irradiated by sequences of two femtosecond laser pulses delayed in the picosecond time scale. The ionic composition of the ablation plasma and the dependence of the ion signals on the interpulse delay and relative fluence are determined by time-of-flight mass spectrometry. The results show that, when pulses of different fluence are used, highly asymmetric ion yields are obtained, with more intense ion signals detected when the lower fluence pulse is temporally ahead. The comparison between asymmetric and equal fluence double pulse ablation dynamics provides some understanding of the different processes that modify the properties of the layer irradiated by the first pulse and of the mechanisms affecting the coupling of the delayed pulse into the material. The final outcome of the double pulse irradiation is characterized through the analysis of the deposits produced upon ablation.

5.
J Chem Phys ; 128(24): 244309, 2008 Jun 28.
Article in English | MEDLINE | ID: mdl-18601334

ABSTRACT

The real time photodissociation dynamics of CH(3)I from the A band has been studied experimentally and theoretically. Femtosecond pump-probe experiments in combination with velocity map imaging have been carried out to measure the reaction times (clocking) of the different (nonadiabatic) channels of this photodissociation reaction yielding ground and spin-orbit excited states of the I fragment and vibrationless and vibrationally excited (symmetric stretch and umbrella modes) CH(3) fragments. The measured reaction times have been rationalized by means of a wave packet calculation on the available ab initio potential energy surfaces for the system using a reduced dimensionality model. A 40 fs delay time has been found experimentally between the channels yielding vibrationless CH(3)(nu=0) and I((2)P(32)) and I(*)((2)P(12)) that is well reproduced by the calculations. However, the observed reduction in delay time between the I and I(*) channels when the CH(3) fragment appears with one or two quanta of vibrational excitation in the umbrella mode is not well accounted for by the theoretical model.

SELECTION OF CITATIONS
SEARCH DETAIL
...