Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Crystallogr E Crystallogr Commun ; 76(Pt 5): 697-702, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32431935

ABSTRACT

The X-ray crystal structure of the title phthalazin-1-one derivative, C17H16N2O3S {systematic name: 2-[(2,4,6-tri-methyl-benzene)-sulfon-yl]-1,2-di-hydro-phthalazin-1-one}, features a tetra-hedral sulfoxide-S atom, connected to phthalazin-1-one and mesityl residues. The dihedral angle [83.26 (4)°] between the organic substituents is consistent with the mol-ecule having the shape of the letter V. In the crystal, phthalazinone-C6-C-H⋯O(sulfoxide) and π(phthalazinone-N2C4)-π(phthalazinone-C6) stacking [inter-centroid distance = 3.5474 (9) Å] contacts lead to a linear supra-molecular tape along the a-axis direction; tapes assemble without directional inter-actions between them. The analysis of the calculated Hirshfeld surfaces confirm the importance of the C-H⋯O and π-stacking inter-actions but, also H⋯H and C-H⋯C contacts. The calculation of the inter-action energies indicate the importance of dispersion terms with the greatest energies calculated for the C-H⋯O and π-stacking inter-actions.

2.
Dalton Trans ; 49(14): 4578, 2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32193524

ABSTRACT

Correction for 'Ionic-caged heterometallic bismuth-platinum complex exhibiting electrocatalytic CO2 reduction' by Takefumi Yoshida et al., Dalton Trans., 2020, 49, 2652-2660.

3.
Dalton Trans ; 49(8): 2652-2660, 2020 Feb 25.
Article in English | MEDLINE | ID: mdl-32043108

ABSTRACT

An air-stable heterometallic Bi-Pt complex with the formula [BiPt(SAc)5]n (1; SAc = thioacetate) was synthesized. The crystal structure, natural bond orbital (NBO) and local orbital locator (LOL) analyses, localized orbital bonding analysis (LOBA), and X-ray absorption fine structure (XAFS) measurements were used to confirm the existence of Bi-Pt bonding and an ionic cage of O atoms surrounding the Bi ion. From the cyclic voltammetry (CV) and controlled potential electrolysis (CPE) experiments, 1 in tetrahydrofuran reduced CO2 to CO, with a faradaic efficiency (FE) of 92% and a turnover frequency (TOF) of 8 s-1 after 30 min of CPE at -0.79 V vs. NHE. The proposed mechanism includes an energetically favored pathway via the ionic cage, which is supported by the results of DFT calculations and reflectance infrared spectroelectrochemistry data.

4.
Chemistry ; 26(27): 6036-6049, 2020 May 12.
Article in English | MEDLINE | ID: mdl-32045039

ABSTRACT

Acetato-bridged palladium-lanthanide tetranuclear heterometallic complexes of the form [Pd2 Ln2 (H2 O)2 (CH3 COO)10 ]⋅2 CH3 COOH [Ln2 =Ce2 (1), Pr2 (2), Nd2 (3), Sm2 (4), Tb2 (5), Dy2 (6), Dy0.2 Y1.8 (6''), Ho2 (7), Er2 (8), Er0.24 Y1.7 (8''), Tm2 (9), Yb2 (10), Y2 (11)] were synthesised and characterised by experimental and theoretical techniques. All complexes containing Kramers lanthanide ions [Ln3+ =Ce (1), Nd (3), Sm (4), Dy (6), DyY (6''), Er (8), ErY (8''), Yb (10)] showed field-induced slow magnetic relaxation, characteristic of single-molecule magnetism and purely of molecular origin. In contrast, all non-Kramers lanthanide ions [Ln3+ =Pr (2), Tb (5), Ho (7), Tm (9), Y3+ (11) is diamagnetic and non-lanthanide] did not show any slow magnetic relaxation. The variation in the electronic structure and accompanying consequences across the complexes representing all Kramers and non-Kramers lanthanide ions were investigated. The origin of the magnetic properties and the extent to which the axial donor-acceptor interaction involving the lanthanide ions and an electron-deficient d z 2 orbital of palladium affects the observed magnetic and electronic properties across the lanthanide series are presented. Unique consistent electronic and magnetic properties of isostructural complexes spanning the lanthanide series with properties dependent on whether the ions are Kramers or non-Kramers are reported.

5.
Chemistry ; 23(19): 4551-4556, 2017 Apr 03.
Article in English | MEDLINE | ID: mdl-28248439

ABSTRACT

Heterometallic Gd-Pt complexes ([Gd2 Pt3 (H2 O)2 (SAc)12 ] (SAc=thioacetate), [Y1.4 Gd0.6 Pt3 (H2 O)2 (SAc)12 ], and [Gd2 Pt3 (H2 O)6 (SAc)12 ]⋅7 H2 O have been synthesized. The crystal structures and DFT calculations indicated a Gd-Pt heretometallic bond. Single-crystal ESR spectra determined the direction of magnetic anisotropy as direction of the Gd-Pt bond. In other words, the Gd-Pt bond dictates the direction of magnetic anisotropy. The heterometallic Gd-Pt bond lowers the symmetry of the Gd ion, splitting the Kramers doublet in a dc field. Thus, we observed clear field-induced slow magnetic relaxation of [Y1.4 Gd0.6 Pt3 (H2 O)2 (SAc)12 ] up to 36 K. The relaxation process was determined to be a direct process.

SELECTION OF CITATIONS
SEARCH DETAIL
...