Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Glycosci (1999) ; 68(1): 11-18, 2021.
Article in English | MEDLINE | ID: mdl-34354541

ABSTRACT

The genus Pestalotiopsis are endophytic fungi that have recently been identified as cellulolytic system producers. We herein cloned a gene coding for a xylanase belonging to glycoside hydrolase (GH) family 10 (PesXyn10A) from Pestalotiopsis sp. AN-7, which was isolated from the soil of a mangrove forest. This protein was heterologously expressed by Pichia pastoris as a host, and its enzymatic properties were characterized. PesXyn10A was produced as a glycosylated protein and coincident to theoretical molecular weight (35.3 kDa) after deglycosylation by peptide-NfF-glycosidase F. Purified recombinant PesXyn10A exhibited maximal activity at pH 6.0 and 50 °C, and activity was maintained at 90 % at pH 5.0 and temperatures lower than 30 °C for 24 h. The substrate specificity of PesXyn10A was limited and it hydrolyzed glucuronoxylan and arabinoxylan, but not ß-glucan. The final hydrolysis products from birchwood xylan were xylose, xylobiose, and 1,23-α-D-(4-O-methyl-glucuronyl)-1,4-ß-D-xylotriose. The addition of metallic salts (NaCl, KCl, MgCl2, and CaCl2) activated PesXyn10A for xylan degradation, and maximal activation by these divalent cations was approximately 160 % at a concentration of 5 mM. The thermostability of PesXyn10A significantly increased in the presence of 50 mM NaCl or 5 mM MgCl2. The present results suggest that the presence of metallic salts at a low concentration, similar to brackish water, exerts positive effects on the enzyme activity and thermal stability of PesXyn10A.

SELECTION OF CITATIONS
SEARCH DETAIL
...