Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Mass Spectrom (Chichester) ; 23(1): 4-10, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28657446

ABSTRACT

In this study, direct analysis in real time adduct selectivities of a 558 in-house high-resolution mass spectrometry sample library was evaluated. The protonated molecular ion ([M + H]+) was detected in 462 samples. The ammonium adduct ion ([M + NH4]+) was also detected in 262 samples. [M + H]+ and [M + NH4]+ molecular ions were observed simultaneously in 166 samples. These adduct selectivities were related to the elemental compositions of the sample compounds. [M + NH4]+ selectivity correlated with the number of oxygen atom(s), whereas [M + H]+ selectivity correlated with the number of nitrogen atom(s) in the elemental compositions. For compounds including a nitrogen atom and an oxygen atom [M + H]+ was detected; [M + NH4]+ was detected for compounds including an oxygen atom only. Density functional theory calculations were performed for selected library samples and model compounds. Energy differences were observed between compounds detected as [M + H]+ and [M + NH4]+, and between compounds including a nitrogen atom and an oxygen atom in their elemental compositions. The results suggested that the presence of oxygen atoms stabilizes [M + NH4]+, but not every oxygen atom has enough energy for detection of [M + NH4]+. It was concluded that the nitrogen atom(s) and oxygen atom(s) in the elemental compositions play important roles in the adduct formation in direct analysis in real time mass spectrometry.

SELECTION OF CITATIONS
SEARCH DETAIL
...