Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Parasit Vectors ; 16(1): 266, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37545007

ABSTRACT

BACKGROUND: Prompt and precise identification of black flies (Simuliidae) is crucial, given their biting behaviour and significant impact on human and animal health. To address the challenges presented by morphology and chromosomes in black fly taxonomy, along with the limited availability of molecular data pertaining to the black fly fauna in Vietnam, this study employed DNA-based approaches. Specifically, we used mitochondrial and nuclear-encoded genes to distinguish nominal species of black flies in Vietnam. METHODS: In this study, 135 mitochondrial cytochrome c oxidase subunit I (COI) sequences were established for 45 species in the genus Simulium in Vietnam, encompassing three subgenera (Gomphostilbia, Nevermannia, and Simulium), with 64 paratypes of 27 species and 16 topotypes of six species. Of these COI sequences, 71, representing 27 species, are reported for the first time. RESULTS: Combined with GenBank sequences of specimens from Malaysia, Myanmar, Thailand, and Vietnam, a total of 234 DNA barcodes of 53 nominal species resulted in a 71% success rate for species identification. Species from the non-monophyletic Simulium asakoae, S. feuerborni, S. multistriatum, S. striatum, S. tuberosum, and S. variegatum species groups were associated with ambiguous or incorrect identifications. Pairwise distances, phylogenetics, and species delimitation analyses revealed a high level of cryptic diversity, with discovery of 15 cryptic taxa. The current study also revealed the limited utility of a fast-evolving nuclear gene, big zinc finger (BZF), in discriminating closely related, morphologically similar nominal species of the S. asakoae species group. CONCLUSION: This study represents the first comprehensive molecular genetic analysis of the black fly fauna in Vietnam to our knowledge, providing a foundation for future research. DNA barcoding exhibits varying levels of differentiating efficiency across species groups but is valuable in the discovery of cryptic diversity.


Subject(s)
Bites and Stings , Simuliidae , Animals , Humans , Simuliidae/genetics , Vietnam , DNA Barcoding, Taxonomic/methods , Phylogeny , Thailand , Larva
2.
Parasit Vectors ; 16(1): 248, 2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37480109

ABSTRACT

BACKGROUND: DNA barcoding is a valuable taxonomic tool for rapid and accurate species identification and cryptic species discovery in black flies. Indonesia has 143 nominal species of black flies, but information on their biological aspects, including vectorial capacity and biting habits, remains underreported, in part because of identification problems. The current study represents the first comprehensive DNA barcoding of Indonesian black flies using mitochondrial cytochrome c oxidase subunit I (COI) gene sequences. METHODS: Genomic DNA of Indonesian black fly samples were extracted and sequenced, producing 86 COI sequences in total. Two hundred four COI sequences, including 118 GenBank sequences, were analysed. Maximum likelihood (ML) and Bayesian inference (BI) trees were constructed and species delimitation analyses, including ASAP, GMYC and single PTP, were performed to determine whether the species of Indonesian black flies could be delineated. Intra- and interspecific genetic distances were also calculated and the efficacy of COI sequences for species identification was tested. RESULTS: The DNA barcodes successfully distinguished most morphologically distinct species (> 80% of sampled taxa). Nonetheless, high maximum intraspecific distances (3.32-13.94%) in 11 species suggested cryptic diversity. Notably, populations of the common taxa Simulium (Gomphostilbia) cheongi, S. (Gomphostilbia) sheilae, S. (Nevermannia) feuerborni and S. (Simulium) tani in the islands of Indonesia were genetically distinct from those on the Southeast Asian mainland (Malaysia and Thailand). Integrated morphological, cytogenetic and nuclear DNA studies are warranted to clarify the taxonomic status of these more complex taxa. CONCLUSIONS: The findings showed that COI barcoding is a promising taxonomic tool for Indonesian black flies. The DNA barcodes will aid in correct identification and genetic study of Indonesian black flies, which will be helpful in the control and management of potential vector species.


Subject(s)
DNA Barcoding, Taxonomic , Simuliidae , Animals , Indonesia , Simuliidae/genetics
3.
Parasitol Int ; 94: 102733, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36693472

ABSTRACT

Mermithids are the most common parasites of black flies and are associated with host feminization and sterilization in infected hosts. However, information on the species / lineage of black fly mermithids in Southeast Asia, including Malaysia requires further elucidation. In this study, mermithids were obtained from black fly larvae collected from 138 freshwater stream sites across East and West Malaysia. A molecular approach based on nuclear-encoded 18S ribosomal RNA (18S rRNA) gene was used to identify the species identity / lineage of 77 nematodes successfully extracted and sequenced from the specimens collected. Maximum likelihood and neighbor-joining phylogenetic analyses demonstrated five distinct mermithid lineages. Four species delimitation analyses: automated simultaneous analysis phylogenetics (ASAP), maximum likelihood Poisson tree processes with Bayesian inferences (bPTP_ML), generalized mixed yule coalescent (GMYC) and single rate Poisson tree processes (PTP) were applied to delimit the species boundaries of mermithid lineages in this data set along with genetic distance analysis. Data analysis supports five distinct lineages or operational taxonomic units for mermithids in the present study, with two requiring further investigation as they may represent intraspecific variation or closely related taxa. One mermithid lineage was similar to that previously observed in Simulium nigrogilvum from Thailand. Co-infection with two mermithids of different lineages was observed in one larva of Simulium trangense. This study represents an important first step towards exploring other aspects of host - parasite interactions in black fly mermithids.


Subject(s)
Mermithoidea , Simuliidae , Animals , Simuliidae/parasitology , Rivers , Malaysia/epidemiology , Phylogeny , Bayes Theorem , Larva
4.
Acta Trop ; 230: 106386, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35248580

ABSTRACT

Mermithids are parasites of black flies that cause host mortality along with physical and behavioural changes in infected hosts. However, there is a lack of knowledge on the distribution of mermithids infecting black fly larvae and the factors that influence these distributions in Asia, including Malaysia. A total of 13,116 mid- to late-instar black fly larvae belonging to 42 species were collected from 138 streams across East and West Malaysia and screened for the presence of mermithid parasites. Overall, 121 mermithids were obtained from 107 (0.82%) larvae of nine (21.4%) black fly species. The average number of mermithids per black fly host was 1.10 ± 0.04 (SE), ranging from one to three mermithids per host. Mermithid infection was highest in Simulium trangense, with a frequency of occurrence of 6.5%, followed by S. cheongi (5.8%) and S. angulistylum complex (2.9%). Infection was lowest in S. brevipar and S. tahanense, with a frequency of occurrence of 0.7% each. Regression analysis indicated that mermithid infections in larval black flies were significantly associated with cooler and shallower streams with more canopy cover, dense riparian vegetation, high dissolved oxygen, and lower conductivity and complete pH. Forward logistic regression further indicated that infections in S. cheongi were associated with shaded, cooler, slightly acidic streams with higher conductivity and dissolved oxygen. These findings suggest that mermithid infections in larval black flies in Malaysia are not randomly distributed and are influenced by the breeding habitat of their hosts.


Subject(s)
Mermithoidea , Parasites , Simuliidae , Animals , Larva , Malaysia/epidemiology , Oxygen , Simuliidae/parasitology
5.
Acta Trop ; 218: 105904, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33775626

ABSTRACT

Most female black flies in the genus Simulium are blood-sucking flies and they can cause various parasitic diseases in human and animal. A total of 94 species of black flies have been reported in Malaysia, however, their biting behavior and role as vector of infectious agents remain understudied. To fill in this knowledge gap, we attempted to survey adult black flies from field populations in Peninsular Malaysia. In a survey carried out in 2017 at Tasik Kenyir, Terengganu, three females were caught while attracted and landed on human skin. Further morphological and molecular analyses showed that the specimens were identical to Simulium (Gomphostilbia) aziruni Takaoka, Hashim & Chen of the Simulium gombakense species-group. This is the first report on a black fly species attracted to human in Malaysia which serves as a steppingstone towards in-depth studies for black flies in this region.


Subject(s)
Simuliidae/classification , Simuliidae/genetics , Animals , Female , Genes, Insect , Humans , Insect Bites and Stings , Insect Vectors/classification , Malaysia , Male , Phylogeny , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...