Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Ultrasound Obstet Gynecol ; 36(3): 315-23, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20812307

ABSTRACT

OBJECTIVES: Campomelic dysplasia is a rare congenital skeletal disorder characterized by bowing of the long bones and a variety of other skeletal and extraskeletal defects, many of which can now be identified prenatally using advanced ultrasound equipment. The disorder is caused by mutations in SRY-box 9 (SOX9), a gene that is abundantly expressed in chondrocytes as well as in other tissues. However, the correlation between genotype and phenotype is still unclear. We report five cases of prenatally detected campomelic dysplasia in which the diagnosis was confirmed by molecular analysis. METHODS: Ultrasound examinations were performed between 12 and 32 weeks. Standard fetal biometric measurements were obtained. Fetal sex was determined sonographically and confirmed by chromosomal analysis. Genomic DNA was obtained in four cases before termination of pregnancy from chorionic villi or amniocytes and in one case postnatally from peripheral blood. RESULTS: Skeletal dysplasia, most often limb shortening and bowed femora, was observed in one case in the first trimester, in three cases in the second trimester and in one case, presenting late for antenatal care, in the third trimester. Four of the pregnancies were terminated and one was carried to term. Postmortem/postnatal physical and radiographic examinations confirmed the presence of anomalies characteristic of campomelic dysplasia. A de novo mutation in the SOX9 gene was detected in all four cases that underwent termination. The father of the proband in the case that went to term was a carrier of a somatic mosaic mutation without clinical or radiographic signs of campomelic dysplasia. CONCLUSIONS: It is likely that the integrated expertise of ultrasonographers, obstetricians, pediatricians and clinical geneticists will markedly improve the likelihood of accurate prenatal clinical diagnoses of campomelic dysplasia. This will, in turn, encourage more specific molecular testing and facilitate comprehensive genetic counseling.


Subject(s)
Campomelic Dysplasia/diagnostic imaging , Campomelic Dysplasia/genetics , SOX9 Transcription Factor/genetics , Abortion, Induced , Adult , Campomelic Dysplasia/embryology , Female , Genetic Counseling , Genotype , Gestational Age , Humans , Phenotype , Point Mutation/genetics , Pregnancy , Pregnancy Trimester, First , Ultrasonography, Prenatal , Young Adult
3.
Kidney Int ; 69(6): 1033-40, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16528253

ABSTRACT

Hereditary factors are suspected to contribute to the pathogenesis of sporadic primary glomerulonephritis, but their contribution is difficult to delineate in the general population. We studied the prevalence of primary glomerulonephritis in an isolated population from the extreme northern Valtrompia valley, Northern Italy. Investigation of medical records, community urinary screening program and molecular characterization of the population's ancestry were performed; genealogies of affected individuals were researched. Forty-three patients with primary glomerulonephritis were identified: 25 had biopsy-proven disease (11 immunoglobulin A (IgA) nephropathy; eight mesangial proliferative glomerulonephritis without IgA deposits; four focal segmental glomerular sclerosis; two membranous nephropathy), and 18 had clinical glomerulonephritis. All 43 patients originated from three mountain villages (Collio, San Colombano, and Bovegno). In contrast, we found only four cases of primary glomerulonephritis in two nearby villages (Pezzaze and Tavernole) that shared similar population histories and lifestyles, demonstrating heterogeneity of risk factors for glomerulonephritis (P=3 x 10(-5)). All 43 affected individuals could be traced back to common ancestors (XVI-XVII centuries), enabling the construction of three large pedigree including three parent-child affected pairs and five affected siblings pairs. Molecular data showed lower genetic diversity and increased inbreeding in the Valtrompia population compared to the control population. Molecular and genealogical evidence of limited set of founders and the absence of shared nephritogenic environmental factors suggest that our patients share a common genetic susceptibility to the development of primary glomerulonephritis. Further molecular study of our families will offer the possibility to shed light on the genetic background underlying these glomerular disorders.


Subject(s)
Glomerulonephritis/epidemiology , Glomerulonephritis/genetics , Social Isolation , Adult , Aged , Female , Genetic Predisposition to Disease , Genetic Testing , Humans , Italy/epidemiology , Male , Middle Aged , Pedigree , Prevalence
SELECTION OF CITATIONS
SEARCH DETAIL
...