Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(8): e19021, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37600413

ABSTRACT

Immobilization of enzymes is one of the protein engineering methods used to improve their thermal and long-term stabilities. Immobilized pectinase has become an essential biocatalyst for optimization in the food processing industry. Herein, nanostructured magnetic nanoparticles were prepared in situ for use as supports to immobilize pectinase. The structural, morphological, optical and magnetic features and the chemical compositions of the nanoparticles were characterized. Nanoparticle agglomeration and low porosity were observed due to the synthetic conditions. These nanoparticles exhibited superparamagnetic behavior, which is desirable for biotechnological applications. The maximum retention rate for the enzyme was observed at pH 4.5 with a value of 1179.3 U/mgNP (units per milligram of nanoparticle), which was equivalent to a 65.6% efficiency. The free and immobilized pectinase were affected by the pH and temperature. The long-term instability caused 40% and 32% decreases in the specific activities of the free and immobilized pectinase, respectively. The effects of immobilization were analyzed with kinetic and thermodynamic studies. These results indicated a significant affinity for the substrate, a decreased reaction rate, and improved thermal stability of the immobilized pectinase. The reusability of the immobilized pectinase was preserved effectively during cycling, with only a 21.2% decrease in activity observed from the first to the last use. Therefore, alternative magnetic nanoparticles are presented for immobilizing and maintaining the thermostability of pectinase.

2.
Bioresour Technol ; 168: 33-40, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24785790

ABSTRACT

This study examines the performance of an anaerobic fixed-film bioreactor under seasonal operating conditions prevailing in medium and small size Tequila factories: start-up, normal operation and particularly, during the restart-up after a long stop and starvation period. The proposed start-up procedure attained a stable biofilm in a rather short period (28 days) despite unbalanced COD/N/P ratio and the use of non-acclimated inoculum. The bioreactor was restarted-up after being shut down for 6 months during which the inoculum starved. Even when biofilm detachment and bioreactor clogging were detected at the very beginning of restart-up, results show that the bioreactor performed better as higher COD removal and methane yield were attained. CE-SSCP and Q-PCR analyses, conducted on the biofilm prokaryotic communities for each operating condition, confirmed that the high COD removal results after the bioreactor clogging and the severe starvation period were mainly due to the stable archaeal and resilient bacterial populations.


Subject(s)
Beverages/microbiology , Industrial Waste , Refuse Disposal/methods , Seasons , Anaerobiosis , Archaea/genetics , Archaea/metabolism , Bacteria/genetics , Bacteria/metabolism , Bioreactors/microbiology , Fatty Acids, Volatile/analysis , Polymorphism, Single-Stranded Conformational , RNA, Ribosomal, 16S/genetics
3.
Biotechnol Bioeng ; 110(8): 2131-9, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23322618

ABSTRACT

Efficient monitoring and control schemes are mandatory in the current operation of biological wastewater treatment plants because they must accomplish more demanding environmental policies. This fact is of particular interest in anaerobic digestion processes where the availability of accurate, inexpensive, and suitable sensors for the on-line monitoring of key process variables remains an open problem nowadays. In particular, this problem is more challenging when dealing with batch processes where the monitoring strategy has to be performed in finite time, which limits the application of current advanced monitoring schemes as those based in the proposal of nonlinear observers (i.e., software sensors). In this article, a fractal time series analysis of pH fluctuations in an anaerobic sequential batch reactor (AnSBR) used for the treatment of tequila vinasses is presented. Results indicated that conventional on-line pH measurements can be correlated with off-line determined key process variables, such as COD, VFA and biogas production via some fractality indexes.


Subject(s)
Bioreactors/microbiology , Industrial Waste , Wastewater/microbiology , Anaerobiosis , Hydrogen-Ion Concentration , Time Factors
4.
Bioresour Technol ; 102(17): 7666-72, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21683577

ABSTRACT

A sampled delayed scheme is proposed to regulate the organic pollution level in anaerobic digestion processes by using off-line COD measurements. The proposed scheme is obtained by combining an error feedback control with a steady state estimator to track constant references and attenuate process load disturbances. The controller performance is tested experimentally for the treatment of tequila vinasses over a period of 68days under different set-point values and several uncertain scenarios which include badly known kinetic parameters and load disturbances. Experimental results show that the COD concentration can be effectively regulated under the influence of set-point changes and high load disturbances by using only a daily off-line COD measurement, which makes the industrial application of the proposed control scheme feasible.


Subject(s)
Environmental Pollutants , Anaerobiosis
SELECTION OF CITATIONS
SEARCH DETAIL
...