Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Histol ; 50(3): 203-216, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30903543

ABSTRACT

Perineuronal net (PNN) is a highly structured portion of the CNS extracellular matrix (ECM) regulating synaptic plasticity and a range of pathologic conditions including posttraumatic regeneration and epilepsy. Here we studied Wisteria floribunda agglutinin-stained histological sections to quantify the PNN size and enrichment of chondroitin sulfates in mouse brain and spinal cord. Somatosensory cortex sections were examined during the period of PNN establishment at postnatal days 14, 21 and 28. The single cell PNN size and the chondroitin sulfate intensity were quantified for all cortex layers and specifically for the cortical layer IV which has the highest density of PNN-positive neurons. We demonstrate that the chondroitin sulfate proteoglycan staining intensity is increased between P14 and P28 while the PNN size remains unchanged. We then addressed posttraumatic changes of the PNN expression in laminae 6 and 7 of cervical spinal cord following hemisection injury. We demonstrate increase of the chondroitin sulfate content at 1.6-1.8 mm rostrally from the injury site and increase of the density of PNN-bearing cells at 0.4-1.2 mm caudally from the injury site. We further demonstrate decrease of the single cell PNN area at 0.2 mm caudally from the injury site suggesting that the PNN ECM takes part in the posttraumatic tissue rearrangement in the spinal cord. Our results demonstrate new insights on the PNN structure dynamics in the developing and posttraumatic CNS.


Subject(s)
Brain/metabolism , Chondroitin Sulfate Proteoglycans/metabolism , Neuronal Plasticity/genetics , Neurons/metabolism , Animals , Brain/pathology , Extracellular Matrix/metabolism , Mice , Neurons/pathology , Plant Lectins/chemistry , Plant Lectins/pharmacology , Receptors, N-Acetylglucosamine/chemistry , Spinal Cord/metabolism , Spinal Cord/pathology
2.
Cell Rep ; 11(10): 1511-8, 2015 Jun 16.
Article in English | MEDLINE | ID: mdl-26027931

ABSTRACT

The actin cytoskeleton and cytoplasmic intermediate filaments contribute to cell migration and morphogenesis, but the interplay between these two central cytoskeletal elements has remained elusive. Here, we find that specific actin stress fiber structures, transverse arcs, interact with vimentin intermediate filaments and promote their retrograde flow. Consequently, myosin-II-containing arcs are important for perinuclear localization of the vimentin network in cells. The vimentin network reciprocally restricts retrograde movement of arcs and hence controls the width of flat lamellum at the leading edge of the cell. Depletion of plectin recapitulates the vimentin organization phenotype of arc-deficient cells without affecting the integrity of vimentin filaments or stress fibers, demonstrating that this cytoskeletal cross-linker is required for productive interactions between vimentin and arcs. Collectively, our results reveal that plectin-mediated interplay between contractile actomyosin arcs and vimentin intermediate filaments controls the localization and dynamics of these two cytoskeletal systems and is consequently important for cell morphogenesis.


Subject(s)
Actins/metabolism , Vimentin/metabolism , Cell Line, Tumor , Cell Movement/physiology , Cytoskeleton/metabolism , Humans , Intermediate Filaments/metabolism , Plectin/metabolism , Stress Fibers
3.
J Cell Sci ; 128(13): 2388-400, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-26021350

ABSTRACT

Nuclear actin plays an important role in many processes that regulate gene expression. Cytoplasmic actin dynamics are tightly controlled by numerous actin-binding proteins, but regulation of nuclear actin has remained unclear. Here, we performed a genome-wide RNA interference (RNAi) screen in Drosophila cells to identify proteins that influence either nuclear polymerization or import of actin. We validate 19 factors as specific hits, and show that Chinmo (known as Bach2 in mammals), SNF4Aγ (Prkag1 in mammals) and Rab18 play a role in nuclear localization of actin in both fly and mammalian cells. We identify several new regulators of cofilin activity, and characterize modulators of both cofilin kinases and phosphatase. For example, Chinmo/Bach2, which regulates nuclear actin levels also in vivo, maintains active cofilin by repressing the expression of the kinase Cdi (Tesk in mammals). Finally, we show that Nup98 and lamin are candidates for regulating nuclear actin polymerization. Our screen therefore reveals new aspects of actin regulation and links nuclear actin to many cellular processes.


Subject(s)
Actin Depolymerizing Factors/metabolism , Cell Nucleus/metabolism , Genetic Testing , Genome , RNA Interference , Actins , Animals , Conserved Sequence , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Evolution, Molecular , Mice , Models, Biological , Nerve Tissue Proteins/metabolism , Phosphorylation , Polymerization , Protein Serine-Threonine Kinases/metabolism
4.
Proc Natl Acad Sci U S A ; 105(23): 8008-13, 2008 Jun 10.
Article in English | MEDLINE | ID: mdl-18515426

ABSTRACT

The Archaea, and the viruses that infect them, are the least well understood of all of the three domains of life. They often grow in extreme conditions such as hypersaline lakes and sulfuric hot springs. Only rare glimpses have been gained into the structures of archaeal viruses. Here, we report the subnanometer resolution structure of a recently isolated, hypersalinic, membrane-containing, euryarchaeal virus, SH1, in which different viral proteins can be localized. The results indicate that SH1 has a complex capsid formed from single beta-barrels, an important missing link in hypotheses on viral capsid protein evolution. Unusual, symmetry-mismatched spikes seem to play a role in host adsorption. They are connected to highly organized membrane proteins providing a platform for capsid assembly and potential machinery for host infection.


Subject(s)
Archaeal Viruses/chemistry , Host-Pathogen Interactions , Archaeal Viruses/ultrastructure , Capsid/ultrastructure , Cryoelectron Microscopy , Membrane Proteins/chemistry , Viral Proteins/chemistry
5.
Structure ; 15(2): 157-67, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17292834

ABSTRACT

The enveloped dsRNA bacteriophages phi6 and phi8 are the two most distantly related members of the Cystoviridae family. Their structure and function are similar to that of the Reoviridae but their assembly can be conveniently studied in vitro. Electron cryomicroscopy and three-dimensional icosahedral reconstruction were used to determine the structures of the phi6 virion (14 A resolution), phi8 virion (18 A resolution), and phi8 core (8.5 A resolution). Spikes protrude 2 nm from the membrane bilayer in phi6 and 7 nm in phi8. In the phi6 nucleocapsid, 600 copies of P8 and 72 copies of P4 interact with the membrane, whereas in phi8 it is only P4 and 60 copies of a minor protein. The major polymerase complex protein P1 forms a dodecahedral shell from 60 asymmetric dimers in both viruses, but the alpha-helical fold has apparently diverged. These structural differences reflect the different host ranges and entry and assembly mechanisms of the two viruses.


Subject(s)
Bacteriophage phi 6/ultrastructure , Cystoviridae/ultrastructure , Bacteriophage phi 6/enzymology , Capsid/ultrastructure , Cryoelectron Microscopy , Cystoviridae/enzymology , DNA-Directed RNA Polymerases/ultrastructure , RNA, Double-Stranded/ultrastructure , RNA, Viral/ultrastructure , Viral Nonstructural Proteins/ultrastructure
6.
J Struct Biol ; 158(2): 156-64, 2007 May.
Article in English | MEDLINE | ID: mdl-17095250

ABSTRACT

Packaging of the Cystovirus varphi8 genome into the polymerase complex is catalysed by the hexameric P4 packaging motor. The motor is located at the fivefold vertices of the icosahedrally symmetric polymerase complex, and the symmetry mismatch between them may be critical for function. We have developed a novel image-processing approach for the analysis of symmetry-mismatched structures and applied it to cryo-electron microscopy images of P4 bound to the polymerase complex. This approach allowed us to solve the three-dimensional structure of the P4 in situ to 15-A resolution. The C-terminal face of P4 was observed to interact with the polymerase complex, supporting the current view on RNA translocation. We suggest that the symmetry mismatch between the two components may facilitate the ring opening required for RNA loading prior to its translocation.


Subject(s)
Cystoviridae/enzymology , DNA-Directed RNA Polymerases/ultrastructure , Multiprotein Complexes/ultrastructure , Viral Nonstructural Proteins/ultrastructure , Virus Assembly , Cryoelectron Microscopy/methods , Crystallography, X-Ray/methods , Cystoviridae/physiology , DNA-Directed RNA Polymerases/chemistry , Multiprotein Complexes/chemistry , RNA, Viral/metabolism , Viral Nonstructural Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...