Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
APMIS ; 131(7): 333-338, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37186317

ABSTRACT

Shiga toxin (stx)-producing Escherichia coli (STEC) causes potentially severe gastrointestinal infections. Due to its public health importance, control measures are required, and carriers may need to refrain from work or daycare when the risk of spread to vulnerable people is high. We evaluated the use of direct stool multiplex PCR compared to culture for primary STEC diagnostics and for follow-up in order to update the national guidelines for STEC monitoring. We analyzed primary and follow-up samples of 236 STEC PCR-positive cases at HUSLAB, Helsinki, Finland in 2016-2017, altogether 858 samples. All STEC PCR-positive samples were inoculated on non-selective chromogenic agar plates. Culture positivity was confirmed from culture sweeps by PCR. 211 (89%) of the cases were culture positive in their primary sample. Of all primary and follow-up samples, 499 were PCR positive and of these 450 (90%) were culture positive. PCR-negative follow-up samples were available from 125 cases. Of these, 88 cases were followed for at least three consecutive PCR-negative samples. Two cases (2%) had culture-positive sample(s) after two consecutive PCR-negative samples. The median time for STEC clearance was 22-23 days. The laboratory-developed multiplex PCR test used in this study is a reliable method for STEC diagnostics and follow-up in a clinical laboratory. When non-selective methodology is used, the majority of PCR-positive samples (90%) are also culture positive. Furthermore, only two cases (2%) in our material had two consecutive PCR-negative samples followed by positive samples. Consequently, to demonstrate the clearance from STEC infection, we consider two PCR-negative follow-up samples sufficient. The Finnish national guidelines for STEC monitoring have been updated accordingly.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Shiga-Toxigenic Escherichia coli , Humans , Shiga-Toxigenic Escherichia coli/genetics , Multiplex Polymerase Chain Reaction , Follow-Up Studies , Escherichia coli Infections/diagnosis , Bacteriological Techniques/methods , Feces , Escherichia coli Proteins/genetics
2.
PLoS One ; 16(5): e0251661, 2021.
Article in English | MEDLINE | ID: mdl-34019562

ABSTRACT

BACKGROUND: Understanding the false negative rates of SARS-CoV-2 RT-PCR testing is pivotal for the management of the COVID-19 pandemic and it has implications for patient management. Our aim was to determine the real-life clinical sensitivity of SARS-CoV-2 RT-PCR. METHODS: This population-based retrospective study was conducted in March-April 2020 in the Helsinki Capital Region, Finland. Adults who were clinically suspected of SARS-CoV-2 infection and underwent SARS-CoV-2 RT-PCR testing, with sufficient data in their medical records for grading of clinical suspicion were eligible. In addition to examining the first RT-PCR test of repeat-tested individuals, we also used high clinical suspicion for COVID-19 as the reference standard for calculating the sensitivity of SARS-CoV-2 RT-PCR. RESULTS: All 1,194 inpatients (mean [SD] age, 63.2 [18.3] years; 45.2% women) admitted to COVID-19 cohort wards during the study period were included. The outpatient cohort of 1,814 individuals (mean [SD] age, 45.4 [17.2] years; 69.1% women) was sampled from epidemiological line lists by systematic quasi-random sampling. The sensitivity (95% CI) for laboratory confirmed cases (repeat-tested patients) was 85.7% (81.5-89.1%) inpatients; 95.5% (92.2-97.5%) outpatients, 89.9% (88.2-92.1%) all. When also patients that were graded as high suspicion but never tested positive were included in the denominator, the sensitivity (95% CI) was: 67.5% (62.9-71.9%) inpatients; 34.9% (31.4-38.5%) outpatients; 47.3% (44.4-50.3%) all. CONCLUSIONS: The clinical sensitivity of SARS-CoV-2 RT-PCR testing was only moderate at best. The relatively high false negative rates of SARS-CoV-2 RT-PCR testing need to be accounted for in clinical decision making, epidemiological interpretations, and when using RT-PCR as a reference for other tests.


Subject(s)
COVID-19 Nucleic Acid Testing/standards , Adult , Aged , COVID-19 Nucleic Acid Testing/methods , False Negative Reactions , Female , Humans , Male , Middle Aged , Random Allocation , Reagent Kits, Diagnostic/standards
3.
J Clin Virol ; 131: 104614, 2020 10.
Article in English | MEDLINE | ID: mdl-32889495

ABSTRACT

BACKGROUND: Rapid sample-to-answer tests for detection of SARS-CoV-2 are emerging and data on their relative performance is urgently needed. OBJECTIVES: We evaluated the analytical performance of two rapid nucleic acid tests, Cepheid Xpert® Xpress SARS-CoV-2 and Mobidiag Novodiag® Covid-19, in comparison to a combination reference of three large-scale PCR tests. Moreover, utility of the Novodiag® test in tertiary care emergency departments was assessed. RESULTS: In the preliminary evaluation, analysis of 90 respiratory samples resulted in 100% specificity and sensitivity for Xpert®, whereas analysis of 107 samples resulted in 93.4% sensitivity and 100% specificity for Novodiag®. Rapid SARS-CoV-2 testing with Novodiag® was made available for four tertiary care emergency departments in Helsinki, Finland between 18 and 31 May, coinciding with a rapidly declining epidemic phase. Altogether 361 respiratory specimens, together with relevant clinical data, were analyzed with Novodiag® and reference tests: 355/361 of the specimens were negative with both methods, and 1/361 was positive in Novodiag® and negative by the reference method. Of the 5 remaining specimens, two were negative with Novodiag®, but positive with the reference method with late Ct values. On average, a test result using Novodiag® was available nearly 8 hours earlier than that obtained with the large-scale PCR tests. CONCLUSIONS: While the performance of novel sample-to-answer PCR tests need to be carefully evaluated, they may provide timely and reliable results in detection of SARS-CoV-2 and thus facilitate patient management including effective cohorting.


Subject(s)
Coronavirus Infections/diagnosis , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Pneumonia, Viral/diagnosis , Adolescent , Adult , Aged , Aged, 80 and over , Betacoronavirus , COVID-19 , COVID-19 Testing , Child , Child, Preschool , Clinical Laboratory Techniques , Emergency Service, Hospital/statistics & numerical data , Female , Finland , Humans , Infant , Infant, Newborn , Male , Middle Aged , Nasopharynx/virology , Pandemics , SARS-CoV-2 , Sensitivity and Specificity , Tertiary Healthcare/statistics & numerical data , Young Adult
4.
Euro Surveill ; 25(12)2020 03.
Article in English | MEDLINE | ID: mdl-32234120

ABSTRACT

BackgroundTick-borne encephalitis (TBE) is a potentially severe neurological disease caused by TBE virus (TBEV). In Europe and Asia, TBEV infection has become a growing public health concern and requires fast and specific detection.AimIn this observational study, we evaluated a rapid TBE IgM test, ReaScan TBE, for usage in a clinical laboratory setting.MethodsPatient sera found negative or positive for TBEV by serological and/or molecular methods in diagnostic laboratories of five European countries endemic for TBEV (Estonia, Finland, Slovenia, the Netherlands and Sweden) were used to assess the sensitivity and specificity of the test. The patients' diagnoses were based on other commercial or quality assured in-house assays, i.e. each laboratory's conventional routine methods. For specificity analysis, serum samples from patients with infections known to cause problems in serology were employed. These samples tested positive for e.g. Epstein-Barr virus, cytomegalovirus and Anaplasma phagocytophilum, or for flaviviruses other than TBEV, i.e. dengue, Japanese encephalitis, West Nile and Zika viruses. Samples from individuals vaccinated against flaviviruses other than TBEV were also included. Altogether, 172 serum samples from patients with acute TBE and 306 TBE IgM negative samples were analysed.ResultsCompared with each laboratory's conventional methods, the tested assay had similar sensitivity and specificity (99.4% and 97.7%, respectively). Samples containing potentially interfering antibodies did not cause specificity problems.ConclusionRegarding diagnosis of acute TBEV infections, ReaScan TBE offers rapid and convenient complementary IgM detection. If used as a stand-alone, it can provide preliminary results in a laboratory or point of care setting.


Subject(s)
Encephalitis Viruses, Tick-Borne/immunology , Encephalitis, Tick-Borne/diagnosis , Immunoglobulin M/blood , Antibodies, Viral/blood , Encephalitis, Tick-Borne/epidemiology , Encephalitis, Tick-Borne/immunology , Female , Humans , Immunoenzyme Techniques , Male , Predictive Value of Tests , Sensitivity and Specificity
5.
J Gen Virol ; 93(Pt 4): 786-796, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22205716

ABSTRACT

Tick-borne encephalitis virus (TBEV) is a member of the family Flaviviridae. It is transmitted by Ixodes spp. ticks in a cycle involving rodents and small mammals. TBEV has three subtypes: European, Siberian and Far Eastern. The virus causes thousands of cases of meningoencephalitis in Europe annually, with an increasing trend. The increase may be attributed to a complex network of elements, including climatic, environmental and socio-economic factors. In an attempt to understand the evolutionary history and dispersal of TBEV, to existing genetic data we add two novel complete ORF sequences of TBEV strains from northern Europe and the completion of the genome of four others. Moreover, we provide a unique measure for the natural rate of evolution of TBEV by studying two isolations from the same forest on an island in Åland archipelago 44 years apart. For all isolates, we analysed the phylogeny, rate of evolution and probable time of radiation of the different TBEV strains. The results show that the two lineages of TBEV in different Ixodes species have evolved independently for approximately 3300 years. Notably, rapid radiation of TBEV-Eur occurred approximately 300 years ago, without the large-scale geographical clustering observed previously for the Siberian subtype. The measurements from the natural rate of evolution correlated with the estimates done by phylogenetic programs, demonstrating their robustness.


Subject(s)
Encephalitis Viruses, Tick-Borne/genetics , Encephalitis, Tick-Borne/virology , Evolution, Molecular , Animals , Base Sequence , Encephalitis, Tick-Borne/epidemiology , Estonia/epidemiology , Europe/epidemiology , Female , Finland/epidemiology , Genetic Variation/genetics , Humans , Ixodes/virology , Male , Mice , Molecular Epidemiology , Molecular Sequence Data , Phylogeny
7.
Emerg Infect Dis ; 17(1): 72-5, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21192857

ABSTRACT

Rodents might maintain tick-borne encephalitis virus (TBEV) in nature through latent persistent infections. During 2 subsequent winters, 2008 and 2009, in Finland, we detected RNA of European and Siberian subtypes of TBEV in Microtus agrestis and Myodes glareolus voles, respectively. Persistence in rodent reservoirs may contribute to virus overwintering.


Subject(s)
Animals, Wild/virology , Arvicolinae/virology , Encephalitis Viruses, Tick-Borne/isolation & purification , Encephalitis, Tick-Borne/veterinary , Rodent Diseases/epidemiology , Animals , Disease Reservoirs/virology , Encephalitis Viruses, Tick-Borne/genetics , Encephalitis, Tick-Borne/epidemiology , Encephalitis, Tick-Borne/virology , Finland/epidemiology , RNA, Viral/analysis , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , Rodent Diseases/virology , Seasons
8.
J Gen Virol ; 91(Pt 11): 2706-12, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20660147

ABSTRACT

Tick-borne encephalitis (TBE) is a central nervous system infection caused by a flavivirus [tick-borne encephalitis virus (TBEV)], transmitted by Ixodes ticks and endemic in a large region in Eurasia. We collected 2411 ticks from Finland and Russia in 2003-2008, screened them for TBEV by RT-PCR and isolated and analysed eight strains belonging to all three TBEV subtypes; in addition, we obtained two European-subtype strains from human serum samples. TBEV RNA prevalence in unengorged ticks was approximately 1 % both in the northernmost TBE-endemic areas of Europe in Finland and Russian Karelia, and in Siberia in Buryatia. In Finland, both Ixodes ricinus and Ixodes persulcatus ticks were found from distinct areas and, in Russian Karelia, were overlapping in the same study site. TBEV E and NS3 gene sequences obtained showed a variability of 0-4 % within European-subtype strains, 2-9 % for Siberian-subtype strains and 3-13 % for Far Eastern-subtype strains.


Subject(s)
Encephalitis Viruses, Tick-Borne/isolation & purification , Encephalitis, Tick-Borne/virology , Ixodes/virology , Animals , Cluster Analysis , Finland , Genotype , Humans , Molecular Sequence Data , Phylogeny , Polymorphism, Genetic , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , Russia , Sequence Analysis, DNA , Serum/virology , Viral Nonstructural Proteins/genetics
9.
Emerg Infect Dis ; 12(10): 1568-71, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17176574

ABSTRACT

We isolated 11 Siberian subtype tickborne encephalitis virus (TBEV) strains from Ixodes persulcatus ticks from a TBEV-endemic focus in the Kokkola Archipelago, western Finland. Thus I. persulcatus and the Siberian TBEV are reported in a focus considerably northwest of their previously known range in eastern Europe and Siberia.


Subject(s)
Arthropod Vectors/virology , Encephalitis Viruses, Tick-Borne/isolation & purification , Encephalitis, Tick-Borne/virology , Ixodes/virology , Adult , Aged , Animals , Child , Encephalitis Viruses, Tick-Borne/classification , Encephalitis, Tick-Borne/epidemiology , Endemic Diseases , Female , Finland/epidemiology , Humans , Male , Middle Aged , Reverse Transcriptase Polymerase Chain Reaction/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...