Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 20782, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38012178

ABSTRACT

As the need for higher data rates for communication increases, the terahertz (THz) band has drawn considerable attention. This spectral region promises a much wider bandwidth and the transmission of large amounts of data at high speeds. However, there are still challenges that need to be addressed before the THz telecommunications technology hits the consumer market. One of the recurring concerns is that THz radiation is greatly absorbed by atmospheric water-vapor. Although many studies have presented the attenuation of THz signals under different atmospheric conditions, these results analyze specific temperature or humidity values, leaving the need for a more comprehensive analysis over a wider range of climate conditions. In this work, we present the first study of the attenuation of THz radiation over a broad range of temperatures and humidity values. It is worth noticing that all of our measurements have been undertaken at atmospheric pressure unlike many previous studies where the pressure was not kept constant for various temperatures. Furthermore, we extend our analysis beyond the impact of absolute humidity on the bit error rate in THz communications. We also discuss the refractivity of the atmosphere, examining its variations across different temperatures and humidity levels. THz propagation is studied using two different measurement systems, a long-path THz time-domain spectrometer as well as a quasi-optic setup with vector network analyze. We also compare the results with the ITU-R P.676-13 propagation model. We conclude that the attenuation at the absorption peaks increases linearly with water content and has no dependence on the temperature, while the refractive index, away from absorption lines, namely at 300 GHz shows a sub-linear increase with humidity.

2.
Sci Rep ; 12(1): 21038, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36470910

ABSTRACT

Over time, artworks often sustain paint layer separation and air gaps within their internal structure due to storage conditions and past restoration efforts. Because of this, paint layer consolidation interventions are an essential activity for art conservators. However, it is difficult to determine the exact location and the extent of layer separation on a piece of art in a non-invasive way, and even more difficult to evaluate the success of a consolidation intervention. In this work, a fifteenth-century wood panel painting was analyzed using terahertz time-domain imaging before and after it was consolidated. Using the terahertz data, it was possible to determine the areas on the artwork in need of consolidation and aid the intervention. The analysis of the after data allowed for the control and determination of the success of the consolidation effort in a non-destructive manner.

SELECTION OF CITATIONS
SEARCH DETAIL
...