Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
ACS Appl Bio Mater ; 7(1): 131-143, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38079569

ABSTRACT

Smart materials with controlled stimuli-responsive functions are at the forefront of technological development. In this work, we present a generic strategy that combines simple components, physicochemical responses, and easy fabrication methods to achieve a dual stimuli-responsive system capable of location-specific antimicrobial cargo delivery. The encapsulated system is fabricated by combining a biocompatible inert polymeric matrix of poly(dimethylsiloxane) (PDMS) and a bioactive cargo of saturated fatty acids. We demonstrate the effectiveness of our approach to deliver antimicrobial activity for the model bacteria Escherichia coli. The system responds to two control variables, temperature and pH, delivering two levels of antimicrobial response under distinct combinations of stimuli: one response toward the planktonic media and another response directly at the surface for sessile bacteria. Spatially resolved Raman spectroscopy alongside thermal and structural material analysis reveals that the system not only exhibits ON/OFF states but can also control relocation and targeting of the active cargo toward either the surface or the liquid media, leading to different ON/OFF states for the planktonic and sessile bacteria. The approach proposed herein is technologically simple and scalable, facing low regulatory barriers within the food and healthcare sectors by using approved components and relying on fundamental chemical processes. Our results also provide a proof-of-concept platform for the design and easy fabrication of delivery systems capable of operating as Boolean logic gates, delivering different responses under different environmental conditions.


Subject(s)
Biological Products , Temperature , Polymers/chemistry , Escherichia coli , Hydrogen-Ion Concentration
2.
J Phys Chem B ; 127(33): 7283-7290, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37556839

ABSTRACT

Elucidating the photosynthetic processes that occur within the reaction center-light-harvesting 1 (RC-LH1) supercomplexes from purple bacteria is crucial for uncovering the assembly and functional mechanisms of natural photosynthetic systems and underpinning the development of artificial photosynthesis. Here, we examined excitation energy transfer of various RC-LH1 supercomplexes of Rhodobacter sphaeroides using transient absorption spectroscopy, coupled with lifetime density analysis, and studied the roles of the integral transmembrane polypeptides, PufX and PufY, in energy transfer within the RC-LH1 core complex. Our results show that the absence of PufX increases both the LH1 → RC excitation energy transfer lifetime and distribution due to the role of PufX in defining the interaction and orientation of the RC within the LH1 ring. While the absence of PufY leads to the conformational shift of several LH1 subunits toward the RC, it does not result in a marked change in the excitation energy transfer lifetime.


Subject(s)
Photosynthetic Reaction Center Complex Proteins , Rhodobacter sphaeroides , Photosynthetic Reaction Center Complex Proteins/chemistry , Light-Harvesting Protein Complexes/chemistry , Rhodobacter sphaeroides/metabolism , Peptides , Photosynthesis , Energy Transfer , Bacterial Proteins/chemistry
3.
Nanomaterials (Basel) ; 11(6)2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34208469

ABSTRACT

The generation of hydrogen from water using light is currently one of the most promising alternative energy sources for humankind but faces significant barriers for large-scale applications due to the low efficiency of existing photo-catalysts. In this work we propose a new route to fabricate nano-hybrid materials able to deliver enhanced photo-catalytic hydrogen evolution, combining within the same nanostructure, a plasmonic antenna nanoparticle and semiconductor quantum dots (QDs). For each stage of our fabrication process we probed the chemical composition of the materials with nanometric spatial resolution, allowing us to demonstrate that the final product is composed of a silver nanoparticle (AgNP) plasmonic core, surrounded by satellite Pt decorated CdS QDs (CdS@Pt), separated by a spacer layer of SiO2 with well-controlled thickness. This new type of photoactive nanomaterial is capable of generating hydrogen when irradiated with visible light, displaying efficiencies 300% higher than the constituting photo-active components. This work may open new avenues for the development of cleaner and more efficient energy sources based on photo-activated hydrogen generation.

4.
ACS Appl Mater Interfaces ; 12(47): 52595-52602, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33170631

ABSTRACT

The improvement of antimony selenide solar cells by short-term air exposure is explained using complementary cell and material studies. We demonstrate that exposure to air yields a relative efficiency improvement of n-type Sb2Se3 solar cells of ca. 10% by oxidation of the back surface and a reduction in the back contact barrier height (measured by J-V-T) from 320 to 280 meV. X-ray photoelectron spectroscopy (XPS) measurements of the back surface reveal that during 5 days in air, Sb2O3 content at the sample surface increased by 27%, leaving a more Se-rich Sb2Se3 film along with a 4% increase in elemental Se. Conversely, exposure to 5 days of vacuum resulted in a loss of Se from the Sb2Se3 film, which increased the back contact barrier height to 370 meV. Inclusion of a thermally evaporated thin film of Sb2O3 and Se at the back of the Sb2Se3 absorber achieved a peak solar cell efficiency of 5.87%. These results demonstrate the importance of a Se-rich back surface for high-efficiency devices and the positive effects of an ultrathin antimony oxide layer. This study reveals a possible role of back contact etching in exposing a beneficial back surface and provides a route to increasing device efficiency.

5.
Chem Mater ; 32(7): 3245-3253, 2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32308255

ABSTRACT

The van der Waals material GeSe is a potential solar absorber, but its optoelectronic properties are not yet fully understood. Here, through a combined theoretical and experimental approach, the optoelectronic and structural properties of GeSe are determined. A fundamental absorption onset of 1.30 eV is found at room temperature, close to the optimum value according to the Shockley-Queisser detailed balance limit, in contrast to previous reports of an indirect fundamental transition of 1.10 eV. The measured absorption spectra and first-principles joint density of states are mutually consistent, both exhibiting an additional distinct onset ∼0.3 eV above the fundamental absorption edge. The band gap values obtained from first-principles calculations converge, as the level of theory and corresponding computational cost increases, to 1.33 eV from the quasiparticle self-consistent GW method, including the solution to the Bethe-Salpeter equation. This agrees with the 0 K value determined from temperature-dependent optical absorption measurements. Relaxed structures based on hybrid functionals reveal a direct fundamental transition in contrast to previous reports. The optoelectronic properties of GeSe are resolved with the system described as a direct semiconductor with a 1.30 eV room temperature band gap. The high level of agreement between experiment and theory encourages the application of this computational methodology to other van der Waals materials.

6.
Nanoscale ; 10(34): 16153-16158, 2018 Aug 30.
Article in English | MEDLINE | ID: mdl-30118127

ABSTRACT

Semiconducting quantum dots (QDs) have been considered as promising building blocks of solar energy harvesting systems because of size-dependent electronic structures, e.g. QD-metal heterostructures for solar-driven H2 production. In order to design improved systems, it is crucial to understand size-dependent QD-metal interfacial electron transfer dynamics, picosecond processes in particular. Here, we report that the transfer rates of photogenerated electrons in Pt-decorated CdS QDs can be varied over more than two orders of magnitude by controlling the QD size. In small QDs (2.8 nm diameter), conduction band electrons transfer to Pt sites in an average timescale of ∼30 ps, giving a transfer rate of 2.9 × 1010 s-1 while in significantly larger particles (4.8 nm diameter) the transfer rates decrease to 1.4 × 108 s-1. We attribute this to the tuning of the electron transfer driving force via the quantum confinement-controlled energetic off-set between the involved electronic states of the QDs and the co-catalyst. The same size-dependent trend is observed in the presence of an electron acceptor in solution. With methyl viologen present, electrons leave the QDs within 1 ps for 2.8 nm QDs while for 4.6 nm QDs this process takes nearly 40 ps. The transfer rates are directly correlated with H2 generation efficiencies: faster electron transfer leads to higher H2 generation efficiencies. 2.8 nm QDs display a H2 generation quantum efficiency of 17.3%, much higher than the 11.4% for their 4.6 nm diameter counterpart. We explain these differences by the fact that slower electron transfer cannot compete as efficiently as faster electron transfer with recombination and other losses.

7.
ACS Appl Mater Interfaces ; 8(43): 29434-29441, 2016 Nov 02.
Article in English | MEDLINE | ID: mdl-27723967

ABSTRACT

Colloidal stability and efficient interfacial charge transfer in semiconductor nanocrystals are of great importance for photocatalytic applications in aqueous solution since they provide long-term functionality and high photocatalytic activity, respectively. However, colloidal stability and interfacial charge transfer efficiency are difficult to optimize simultaneously since the ligand layer often acts as both a shell stabilizing the nanocrystals in colloidal suspension and a barrier reducing the efficiency of interfacial charge transfer. Here, we show that, for cysteine-coated, Pt-decorated CdS nanocrystals and Na2SO3 as hole scavenger, triethanolamine (TEOA) replaces the original cysteine ligands in situ and prolongs the highly efficient and steady H2 evolution period by more than a factor of 10. It is shown that Na2SO3 is consumed during H2 generation while TEOA makes no significant contribution to the H2 generation. An apparent quantum yield of 31.5%, a turnover frequency of 0.11 H2/Pt/s, and an interfacial charge transfer rate faster than 0.3 ps were achieved in the TEOA stabilized system. The short length, branched structure and weak binding of TEOA to CdS as well as sufficient free TEOA in the solution are the keys to enhancing colloidal stability and maintaining efficient interfacial charge transfer at the same time. Additionally, TEOA is commercially available and cheap, and we anticipate that this approach can be widely applied in many photocatalytic applications involving colloidal nanocrystals.

8.
Chem Sci ; 7(10): 6499-6505, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-28451108

ABSTRACT

We show that a perylene bisimide (PBI)-based gelator forms self-sorted mixtures with a stilbene-based gelator. To form the self-sorted gels, we use a slow pH change induced by the hydrolysis of glucono-δ-lactone (GdL) to gluconic acid. We prove that self-sorting occurs using NMR spectroscopy, UV-Vis spectroscopy, rheology, and viscometry. The corresponding xerogels are photoconductive. Importantly, the wavelength dependence of the photoconductive films is different to that of the films formed from the perylene bisimide alone. Transient absorption spectroscopy of the xerogels reveals changes in the spectrum of the PBI on the picosecond timescale in the presence of stilbene with a PBI radical anion being formed within 10 ps when the stilbene is present. The ability to form the PBI radical anion under visible light leads to the enhanced spectral response of the multicomponent gels. These systems therefore have potential as useful visible-active optoelectronics.

9.
Nanoscale ; 7(40): 16606-10, 2015 Oct 28.
Article in English | MEDLINE | ID: mdl-26415524

ABSTRACT

We report that the internal quantum efficiency for hydrogen generation in spherical, Pt-decorated CdS nanocrystals can be tuned by quantum confinement, resulting in higher efficiencies for smaller than for larger nanocrystals (17.3% for 2.8 nm and 11.4% for 4.6 nm diameter nanocrystals). We attribute this to a larger driving force for electron and hole transfer in the smaller nanocrystals. The larger internal quantum efficiency in smaller nanocrystals enables a novel colloidal dual-band gap cell utilising differently sized nanocrystals and showing larger external quantum efficiencies than cells with only one size of nanocrystals (9.4% for 2.8 nm particles only and 14.7% for 2.8 nm and 4.6 nm nanocrystals). This represents a proof-of-principle for future colloidal tandem cell.

10.
Nat Mater ; 13(11): 1013-8, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25087066

ABSTRACT

Photocatalytic conversion of solar energy to fuels, such as hydrogen, is attracting enormous interest, driven by the promise of addressing both energy supply and storage. Colloidal semiconductor nanocrystals have been at the forefront of these efforts owing to their favourable and tunable optical and electronic properties as well as advances in their synthesis. The efficiency of the photocatalysts is often limited by the slow transfer and subsequent reactions of the photoexcited holes and the ensuing high charge recombination rates. Here we propose that employing a hydroxyl anion/radical redox couple to efficiently relay the hole from the semiconductor to the scavenger leads to a marked increase in the H2 generation rate without using expensive noble metal co-catalysts. The apparent quantum yield and the formation rate under 447 nm laser illumination exceeded 53% and 63 mmol g(-1) h(-1), respectively. The fast hole transfer confers long-term photostability on the system and opens new pathways to improve the oxidation side of full water splitting.

11.
ACS Nano ; 8(5): 4395-402, 2014 May 27.
Article in English | MEDLINE | ID: mdl-24787120

ABSTRACT

We report on a combined study of Rayleigh and Raman scattering spectroscopy, 3D electron tomography, and discrete dipole approximation (DDA) calculations of a single, complex-shaped gold nanoparticle (NP). Using the exact reconstructed 3D morphology of the NP as input for the DDA calculations, the experimental results can be reproduced with unprecedented precision and detail. We find that not only the exact NP morphology but also the surroundings including the points of contact with the substrate are of crucial importance for a correct prediction of the NP optical properties. The achieved accuracy of the calculations allows determining how many of the adsorbed molecules have a major contribution to the Raman signal, a fact that has important implications for analyzing experiments and designing sensing applications.

12.
Nanoscale ; 6(9): 4458-74, 2014 May 07.
Article in English | MEDLINE | ID: mdl-24664273

ABSTRACT

This feature article discusses the optical trapping and manipulation of plasmonic nanoparticles, an area of current interest with potential applications in nanofabrication, sensing, analytics, biology and medicine. We give an overview over the basic theoretical concepts relating to optical forces, plasmon resonances and plasmonic heating. We discuss fundamental studies of plasmonic particles in optical traps and the temperature profiles around them. We place a particular emphasis on our own work employing optically trapped plasmonic nanoparticles towards nanofabrication, manipulation of biomimetic objects and sensing.

13.
Small ; 10(6): 1194-201, 2014 Mar 26.
Article in English | MEDLINE | ID: mdl-24395590

ABSTRACT

Pyrite nanocrystals are currently considered as a promising material for large scale photovoltaic applications due to their non-toxicity and large abundance. While scalable synthetic routes for phase-pure and shape controlled colloidal pyrite nanocrystals have been reported, their use in solar cells has been hampered by the detrimental effects of their surface defects. Here, we report a systematic study of optical and electronic properties of pyrite nanocrystal thin films employing a series of different ligands varying both the anchor and bridging group. The effect of the ligands on the optical and electronic properties is investigated by UV-vis/NIR absorption spectroscopy, current voltage characteristic measurements and surface photovoltage spectroscopy. We find that the optical absorption is mainly determined by the anchor group. The absorption onset in the thin films shifts up to ∼100 meV to the red. This is attributed to changes in the dielectric environment induced by different anchors. The conductivity and photoconductivity, on the other hand, are determined by combined effects of anchor and bridging group, which modify the effective hopping barrier. Employing different ligands, the differential conductance varies over four orders of magnitude. The largest redshift and differential conductance are observed for ammonium sulfides and thiolated aromatic linkers. Pyridine and long chain amines, on the other hand, lead to smaller modifications. Our findings highlight the importance of surface functionalization and interparticle electronic coupling in the use of pyrite nanocrystals for photovoltaic devices.

14.
J Am Chem Soc ; 135(36): 13262-5, 2013 Sep 11.
Article in English | MEDLINE | ID: mdl-23961721

ABSTRACT

The photocatalytic water reduction reaction on CdS nanorods was studied as function of Pt cluster size. Maximum H2 production is found for Pt46. This effect is attributed to the size dependent electronic properties (e.g., LUMO) of the clusters with respect to the band edges of the semiconductor. This observation may be applicable for the study and interpretation of other systems and reactions, e.g. H2O oxidation or CO2 reduction.

15.
Nano Lett ; 13(9): 4164-8, 2013 Sep 11.
Article in English | MEDLINE | ID: mdl-23927535

ABSTRACT

We report on the deposition of individual gold nanorods from an optical trap using two different laser wavelengths. Laser light, not being resonant to the plasmon resonances of the nanorods, is used for stable trapping and in situ alignment of individual nanorods. Laser light, being resonant to the transversal mode of the nanorods, is used for depositing nanorods at desired locations. The power and polarization dependence of the process is investigated and discussed in terms of force balances between gradient and scattering forces, plasmonic heating, and rotational diffusion of the nanorods. This two-color approach enables faster printing than its one-color equivalent and provides control over the angular orientation (±16°) and location of the deposited nanorods at the single-nanorod level.

16.
Nano Lett ; 13(7): 3140-4, 2013 Jul 10.
Article in English | MEDLINE | ID: mdl-23777471

ABSTRACT

We report on the tuning of specific binding of DNA attached to gold nanoparticles at the individual particle pair (dimer) level in an optical trap by means of plasmonic heating. DNA hybridization events are detected optically by the change in the plasmon resonance frequency due to plasmonic coupling of the nanoparticles. We find that at larger trapping powers (i.e., larger temperatures and stiffer traps) the hybridization rates decrease by more than an order of magnitude. This result is explained by higher temperatures preventing the formation of dimers with lower binding energies. Our results demonstrate that plasmonic heating can be used to fine tune the kinetics of biomolecular binding events.


Subject(s)
Coated Materials, Biocompatible/chemical synthesis , DNA/chemistry , Gold/chemistry , Heating/methods , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Surface Plasmon Resonance/methods , Binding Sites , Coated Materials, Biocompatible/radiation effects , DNA/radiation effects , Energy Transfer , Gold/radiation effects , Kinetics , Light , Materials Testing , Metal Nanoparticles/radiation effects
17.
Nano Lett ; 12(11): 5903-6, 2012 Nov 14.
Article in English | MEDLINE | ID: mdl-23043642

ABSTRACT

We introduce size-selected subnanometer cluster catalysts deposited on thin films of colloidal semiconductor nanocrystals as a novel platform to obtain atomic scale insight into photocatalytic generation of solar fuels. Using Pt-cluster-decorated CdS nanorod films for photocatalytic hydrogen generation as an example, we determine the minimum amount of catalyst necessary to obtain maximum quantum efficiency of hydrogen generation. Further, we provide evidence for tuning photocatalytic activities by precisely controlling the cluster catalyst size.

18.
Nano Lett ; 12(9): 4647-50, 2012 Sep 12.
Article in English | MEDLINE | ID: mdl-22924589

ABSTRACT

Surface-chemistry of individual, optically trapped plasmonic nanoparticles is modified and accelerated by plasmonic overheating. Depending on the optical trapping power, gold nanorods can exhibit red shifts of their plasmon resonance (i.e., increasing aspect ratio) under oxidative conditions. In contrast, in bulk exclusively blue shifts (decreasing aspect ratios) are observed. Supported by calculations, we explain this finding by local temperatures in the trap exceeding the boiling point of the solvent that cannot be achieved in bulk.


Subject(s)
Crystallization/methods , Gold/chemistry , Heating/methods , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Optical Tweezers , Surface Plasmon Resonance/methods , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
19.
Small ; 8(2): 291-7, 2012 Jan 23.
Article in English | MEDLINE | ID: mdl-22095882

ABSTRACT

Noble-metal-decorated colloidal semiconductor nanocrystals are currently receiving significant attention for photocatalytic hydrogen generation. A detailed knowledge of the charge-carrier dynamics in these hybrid systems under hydrogen generation conditions is crucial for improving their performance. Here, a transient absorption spectroscopy study is conducted on colloidal, Pt-decorated CdS nanorods addressing this issue. Surprisingly, under hydrogen generation conditions (i.e., in the presence of the hole-scavenger sodium sulfite), photoelectron transfer to the catalytically active Pt is slower than without the hole scavenger, where no significant hydrogen generation occurs. This unexpected behavior can be explained by different degrees of localization of the electron wavefunction in the presence and absence of holes on the nanorods, which modify the electron transfer rates to the Pt. The results show that solely optimizing charge transfer rates in photocatalytic nanosystems is no guarantee of improved performance. Instead, the collective Coulomb interaction-mediated electron-hole dynamics need to be considered.

20.
Nano Lett ; 11(2): 402-7, 2011 Feb 09.
Article in English | MEDLINE | ID: mdl-21244014

ABSTRACT

Plasmonic hotspots in single gold nanostars are located at the tips and can be excited selectively by laser light as evidenced by photoelectron emission microscopy. Selectivity is achieved through wavelength and polarization of the excitation light. Comparing photoelectron emission intensity and dark-field scattering spectra of the same individual nanostars reveals differences in terms of observable plasmon resonance wavelengths and field enhancements. Differences are explained with the underlying near- and far-field processes of the two techniques.


Subject(s)
Gold/chemistry , Lasers , Nanostructures/chemistry , Nanostructures/ultrastructure , Surface Plasmon Resonance/methods , Materials Testing , Particle Size , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL
...