Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Manage ; 69(6): 1153-1166, 2022 06.
Article in English | MEDLINE | ID: mdl-35378602

ABSTRACT

Increasing farmers' adoption of sustainable nitrogen management practices is crucial for improving water quality. Yet, research to date provides ambiguous results about the most important farmer-level drivers of adoption, leaving high levels of uncertainty as to how to design policy interventions that are effective in motivating adoption. Among others, farmers' engagement in outreach or educational events is considered a promising leverage point for policy measures. This paper applies a Bayesian belief network (BBN) approach to explore the importance of drivers thought to influence adoption, run policy experiments to test the efficacy of different engagement-related interventions on increasing adoption rates, and evaluate heterogeneity of the effect of the interventions across different practices and different types of farms. The underlying data comes from a survey carried out in 2018 among farmers in the Central Valley in California. The analyses identify farm characteristics and income consistently as the most important drivers of adoption across management practices. The effect of policy measures strongly differs according to the nitrogen management practice. Innovative farmers respond better to engagement-related policy measures than more traditional farmers. Farmers with small farms show more potential for increasing engagement through policy measures than farmers with larger farms. Bayesian belief networks, in contrast to linear analysis methods, always account for the complex structure of the farm system with interdependencies among the drivers and allow for explicit predictions in new situations and various kinds of heterogeneity analyses. A methodological development is made by introducing a new validation measure for BBNs used for prediction.


Subject(s)
Farmers , Nitrogen , Agriculture , Bayes Theorem , Farms , Humans , Policy
2.
Environ Sci Technol ; 51(8): 4681-4688, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28388034

ABSTRACT

Aromatic amines are one of the most important classes of compounds contributing to surface water mutagenicity due to their widespread occurrence as precursors and transformation products of dyes, pharmaceuticals, agrochemicals, and other compound classes. In this study, we implemented a workflow including novel analytical and data evaluation methods aiming to identify aromatic amines in six mutagenic wastewater effluents from a chemical-industrial area in Germany, collected by the passive sampler Blue Rayon. We identified 14 amines including the two potent mutagenic aromatic amines 2,3- and 2,8-phenazinediamine, which were reported for the first time as environmental contaminants. These two isomers accounted between 4.2 and 86% of the mutagenicity of the blue rayon extracts and may be byproducts of dye production at the studied site.


Subject(s)
Mutagens , Wastewater , Water Pollutants, Chemical , Amines , Mutagenicity Tests , Rivers
3.
Sci Total Environ ; 512-513: 540-551, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25644849

ABSTRACT

Environmental quality monitoring of water resources is challenged with providing the basis for safeguarding the environment against adverse biological effects of anthropogenic chemical contamination from diffuse and point sources. While current regulatory efforts focus on monitoring and assessing a few legacy chemicals, many more anthropogenic chemicals can be detected simultaneously in our aquatic resources. However, exposure to chemical mixtures does not necessarily translate into adverse biological effects nor clearly shows whether mitigation measures are needed. Thus, the question which mixtures are present and which have associated combined effects becomes central for defining adequate monitoring and assessment strategies. Here we describe the vision of the international, EU-funded project SOLUTIONS, where three routes are explored to link the occurrence of chemical mixtures at specific sites to the assessment of adverse biological combination effects. First of all, multi-residue target and non-target screening techniques covering a broader range of anticipated chemicals co-occurring in the environment are being developed. By improving sensitivity and detection limits for known bioactive compounds of concern, new analytical chemistry data for multiple components can be obtained and used to characterise priority mixtures. This information on chemical occurrence will be used to predict mixture toxicity and to derive combined effect estimates suitable for advancing environmental quality standards. Secondly, bioanalytical tools will be explored to provide aggregate bioactivity measures integrating all components that produce common (adverse) outcomes even for mixtures of varying compositions. The ambition is to provide comprehensive arrays of effect-based tools and trait-based field observations that link multiple chemical exposures to various environmental protection goals more directly and to provide improved in situ observations for impact assessment of mixtures. Thirdly, effect-directed analysis (EDA) will be applied to identify major drivers of mixture toxicity. Refinements of EDA include the use of statistical approaches with monitoring information for guidance of experimental EDA studies. These three approaches will be explored using case studies at the Danube and Rhine river basins as well as rivers of the Iberian Peninsula. The synthesis of findings will be organised to provide guidance for future solution-oriented environmental monitoring and explore more systematic ways to assess mixture exposures and combination effects in future water quality monitoring.


Subject(s)
Conservation of Natural Resources/methods , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Water Resources/statistics & numerical data , Water Quality/standards
4.
Sci Total Environ ; 503-504: 22-31, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-24951181

ABSTRACT

SOLUTIONS (2013 to 2018) is a European Union Seventh Framework Programme Project (EU-FP7). The project aims to deliver a conceptual framework to support the evidence-based development of environmental policies with regard to water quality. SOLUTIONS will develop the tools for the identification, prioritisation and assessment of those water contaminants that may pose a risk to ecosystems and human health. To this end, a new generation of chemical and effect-based monitoring tools is developed and integrated with a full set of exposure, effect and risk assessment models. SOLUTIONS attempts to address legacy, present and future contamination by integrating monitoring and modelling based approaches with scenarios on future developments in society, economy and technology and thus in contamination. The project follows a solutions-oriented approach by addressing major problems of water and chemicals management and by assessing abatement options. SOLUTIONS takes advantage of the access to the infrastructure necessary to investigate the large basins of the Danube and Rhine as well as relevant Mediterranean basins as case studies, and puts major efforts on stakeholder dialogue and support. Particularly, the EU Water Framework Directive (WFD) Common Implementation Strategy (CIS) working groups, International River Commissions, and water works associations are directly supported with consistent guidance for the early detection, identification, prioritisation, and abatement of chemicals in the water cycle. SOLUTIONS will give a specific emphasis on concepts and tools for the impact and risk assessment of complex mixtures of emerging pollutants, their metabolites and transformation products. Analytical and effect-based screening tools will be applied together with ecological assessment tools for the identification of toxicants and their impacts. The SOLUTIONS approach is expected to provide transparent and evidence-based candidates or River Basin Specific Pollutants in the case study basins and to assist future review of priority pollutants under the WFD as well as potential abatement options.


Subject(s)
Conservation of Natural Resources/methods , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/prevention & control , Water Resources/statistics & numerical data , Ecosystem , Environmental Monitoring , Environmental Policy , European Union , Hazardous Substances/analysis , Risk Assessment , Water Pollution, Chemical/statistics & numerical data
5.
Bioorg Med Chem ; 20(2): 985-95, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22182579

ABSTRACT

Inhibition of human histone deacetylases (HDACs) has emerged as a novel concept in the chemotherapeutic treatment of cancer. Two chemical entities, SAHA (ZOLINZA, Merck) and romidepsin (Istodax, Celgene) have been recently approved by the FDA as first-in-class drugs against cutaneous T-cell lymphoma. Clinical use of these drugs revealed several side effects including gastro-intestinal symptoms, fatigue, thrombocytopenia, thrombosis. Romidepsin is associated with an yet unresolved cardiotoxicity issue. A general hypothesis for the diminishment of unwanted adverse effects and an improved therapeutical window suggests the development of more isotype selective inhibitors. In this study the first time HDAC inhibitors with perfluorinated spacers between the zinc chelating moiety and the aromatic capping group were synthesized and tested against representatives of HDAC classes I, IIa and IIb. Competitive binding assays and a combined approach by using blind docking and molecular dynamics support binding of the perfluorinated analogs of SAHA to the active site of the HDAC-like amidohydrolase from Bordetella/Alcaligenes and presumably also to human HDACs. In contrast to the alkyl spacer of SAHA and derivatives, the perfluorinated alkyl spacer seems to contribute to or facilitate the induction of selectivity for class II, particularly class IIa, HDACs even though the overall potency of the perfluorinated SAHA analogs in this study against human HDACs remained still rather moderate in the micromolar range.


Subject(s)
Coordination Complexes/chemical synthesis , Diamide/chemistry , Diamide/pharmacology , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/chemistry , Binding Sites , Catalytic Domain , Cell Line , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Depsipeptides/pharmacology , Diamide/chemical synthesis , Enzyme Activation/drug effects , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Humans , Hydroxamic Acids/pharmacology , Molecular Dynamics Simulation , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Vorinostat , Zinc/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...