Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Scanning ; 31(1): 35-48, 2009.
Article in English | MEDLINE | ID: mdl-19204926

ABSTRACT

The nanopositioning and nanomeasuring machine was applied for the nanotopographic characterization of polymer micro spot arrays of fluorimetric chemochips. Chemochips are arrays of fluorescence dyes in a hydrogel matrix with different response behaviors of chemical components determination of chemical and physico-chemical properties of analytes by a pattern recognition approach. For the characterization and quality control of the spots, a nanometer resolution is needed over a scan range of several millimeters. This challenge could be met by use of a scanning probe sensor in connection with a laser interferometer controlled high-precision positioning and measuring device. This way, topographic scans with the resolution of atomic force microscope could be achieved over these demandingly large ranges. The technique was used in order to determine the quality of thin film micro spots made from fluorescence dye solutions on preformed polymer films and also tested for characterization of monomolecular films in the form of micro spots. The nanotopographic measurements reflect the strong influence of solvent/matrix interaction, wetting, swelling and material transport during the application of picoliter droplets in the spotting process. The measurement clarifies the reason for the formation of roughness in the nanometer range by nano-crystal formation in the upper part of polymer film and the rim formation of micro spots during solvent evaporation. The studies show the effect of application of different numbers of droplets in a dispensing series for spot formation and prove the high importance of polymer/solvent interaction for the quality of formed micro spots as well as for spot arrays of monomolecular films.

2.
Sensors (Basel) ; 9(5): 3228-39, 2009.
Article in English | MEDLINE | ID: mdl-22412308

ABSTRACT

In this contribution, we report on different miniaturized bulk micro machined three-axes piezoresistive force sensors for nanopositioning and nanomeasuring machine (NPMM). Various boss membrane structures, such as one boss full/cross, five boss full/cross and swastika membranes, were used as a basic structure for the force sensors. All designs have 16 p-type diffused piezoresistors on the surface of the membrane. Sensitivities in x, y and z directions are measured. Simulated and measured stiffness ratio in horizontal to vertical direction is measured for each design. Effect of the length of the stylus on H:V stiffness ratio is studied. Minimum and maximum deflection and resonance frequency are measured for all designs. The sensors were placed in a nanopositioning and nanomeasuring machine and one point measurements were performed for all the designs. Lastly the application of the sensor is shown, where dimension of a cube is measured using the sensor.

SELECTION OF CITATIONS
SEARCH DETAIL
...