Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Cytometry A ; 99(10): 1033-1041, 2021 10.
Article in English | MEDLINE | ID: mdl-33389786

ABSTRACT

Hypothermic storage of boar semen may allow antibiotic-free semen preservation but is limited due to chilling sensitivity of boar spermatozoa. Progress in this area requires sensitive tools to detect chilling injury. Therefore, multiparameter flow cytometry panels were evaluated to ascertain whether they are useful tools for identifying sublethal damage of sperm function at a single cell level, thus considering the high intrinsic sperm heterogeneity in a sample. The first fluorochrome panel consisted of Hoechst 33342 to identify DNA-containing events, Yo-Pro 1 to detect viability, merocyanine 540 to describe membrane fluidity, and PNA-Alexa Fluor™ 647 to identify acrosomic integrity. The second fluorochrome panel consisted of SiR700-DNA to identify DNA-containing events, JC-1 to characterize the mitochondrial transmembrane potential (MMP), and Calbryte 630 to assess the intracellular calcium level. Extended boar semen was stored either at 17°C (control) or 5°C (chilled). It is shown that chilling increased membrane fluidity in the viable (Yo-Pro 1 negative) sperm population at 24 h (p < 0.05). At 144 h, the viable, acrosomic intact sperm population with low membrane fluidity was similar for both storage temperatures. Moreover, chilling reduced the main sperm population with high MMP, medium fluorescence for JC-1 monomer and low intracellular calcium level (p < 0.05). However, after in vitro sperm capacitation, this population did not differ between the two storage temperatures. Exemplary computational data visualization in t-distributed stochastic neighbor embedding (t-SNE) maps and moving radar plots revealed similar subpopulations as identified by three-dimensional stacked bar charts. In conclusion, sperm surviving an initial chilling injury withstand long-term storage and respond in a similar manner to capacitation conditions as sperm stored conventionally at 17°C. Multicolor flow cytometry is a valuable tool for detecting chilling-induced alterations of cell function in sperm subpopulations.


Subject(s)
Semen Preservation , Spermatozoa , Animals , Flow Cytometry , Fluorescent Dyes , Male , Semen Preservation/veterinary , Sperm Capacitation , Swine
2.
J Anim Sci Biotechnol ; 12(1): 9, 2021 Jan 11.
Article in English | MEDLINE | ID: mdl-33423688

ABSTRACT

BACKGROUND: Hypothermic preservation of boar semen is considered a potential method for omitting antibiotics from insemination doses, thereby contributing to the global antibiotic resistance defence strategy. The main challenges are chilling injury to spermatozoa and bacterial growth during semen storage leading to reduced fertility. OBJECTIVES: To examine chilling injury and the number and type of bacteria in boar semen stored at 5 °C in the absence of antibiotics, and to assess the applicability of hypothermic semen storage under field conditions. MATERIAL AND METHODS: Boar ejaculates were extended with AndroStar® Premium, stored at 17 °C with and at 5 °C without antibiotics and tested for functional sperm parameters by flow cytometry. Raw semen and extended samples were investigated bacteriologically. Fertility was evaluated after once-daily inseminations of 194 sows in a field study. RESULTS: Lethal sperm damage assessed by motility and membrane integrity was low throughout storage in both experimental groups. Sublethal chilling effects based on the decrease of viable spermatozoa with low membrane fluidity were higher (P < 0.05) up until 72 h in sperm stored at 5 °C compared to 17 °C but did not differ after 144 h. After 72 h, incubation in capacitating medium for 60 min induced a similar decrease in viable sperm with high mitochondria membrane potential and low cytosolic calcium in both groups. In semen stored at 5 °C, bacteria counts were below 103 CFU/mL and the bacteria spectrum was similar to that of raw semen. In 88% of 34 boars, cooled semen fulfilled the requirements for insemination. Fertility was high and did not differ (P > 0.05) between sow groups inseminated with semen stored antibiotic-free at 5 °C and semen stored at 17 °C with antibiotics. CONCLUSION: Despite subtle chilling effects and low bacterial numbers, antibiotic-free hypothermic storage of boar semen offers the possibility to reduce the use of antibiotics in pig insemination. However, strict sanitary guidelines must be maintained and further evidence of efficiency under field conditions is considered desirable.

3.
Porcine Health Manag ; 6(1): 31, 2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33292631

ABSTRACT

Leptospirosis is a zoonotic disease of importance to public health and in livestock productions. It causes significant economic losses in pig breeding farms worldwide. However, actual transmission cycles and disease epidemiology in the pig population remain largely unknown. Despite the fact that the potential risk of venereal transmission of pathogenic Leptospira serovars in pigs has been a topic of discussion since the 1970s, reliable data are still lacking compared to other livestock species. Consequently, antibiotics are added to semen extenders to reduce bacterial contamination including pathogens like Leptospira. In view of the global threat of antimicrobial resistances, the routine use of antibiotics in porcine semen extenders is now under debate. Information about the prevalence of Leptospira infections in boar used for artificial insemination is needed for the development of novel antimicrobial concepts in pig insemination.This short report provides a summary of the state of knowledge, together with negative results from real-time PCR analyses for the detection of pathogenic Leptospira DNA in boar semen. Molecular analyses were performed on 96 raw and extended samples obtained from normospermic ejaculates of 58 boar housed in six different studs in Germany. In the absence of reliable data, it is important to raise the awareness for a subject that can represent a challenge for pig productions in keeping reproductive health and food safety at high levels. The present molecular results indicate that Leptospira might not be a common threat in boar semen. Conclusive evidence would require results from a systematic serological surveillance of boar, combined with seasonal molecular analyses of semen to identify potential carriers, and assess actual seroprevalences, associated Leptospira serovars and transmission events.

4.
PLoS One ; 15(6): e0234339, 2020.
Article in English | MEDLINE | ID: mdl-32516324

ABSTRACT

Hypothermic storage of boar semen provides the possibility to omit antibiotics from semen extenders so long as sperm quality is maintained and bacterial growth prevented. The objective of this study was to determine an optimal cooling-rate frame for boar semen preserved at 5°C in an antibiotic-free extender. Semen from eight boars extended in AndroStar® Premium was cooled from 30°C to 5°C using seven different cooling rates, ranging initially from 0.01 to 0.36°C min-1 and reaching 5°C between 2 h and 24 h after dilution. Sperm motility, membrane integrity, membrane fluidity, mitochondrial membrane potential and the response to the capacitation stimulus bicarbonate remained at a high level for 144 h at 5°C when the semen was initially cooled in a cooling-rate frame ranging from 0.01 to 0.09°C min­1 in the temperature zone from 30 to 25°C, followed by 0.02 to 0.06°C min-1 to 10°C and 0.01 to 0.02°C min­1 to the final storage temperature. A cooling rate of 0.07°C min-1 in the temperature zone from 30 to 10°C led to a reduced response to bicarbonate (P < 0.01) and fast cooling to 5°C within 1 h with a cooling rate of 0.31°C min-1 resulted in lower values (P > 0.05) of all sperm parameters. In a further experiment, slow cooling with a holding time of 6 h at 22°C induced after 6 h storage a temporary increase in Escherichia coli of 0.5 × 103 to 2.4 × 103 CFU mL-1 in the sperm-free inoculated extender. Overall, the load of mesophilic bacteria in the stored semen was below 6 × 103 CFU mL-1, a level that is not regarded as critical for sperm quality. In conclusion, appropriate cooling protocols were established for the antibiotic-free storage of boar semen at 5°C, allowing the application of hypothermic preservation in research and in artificial insemination.


Subject(s)
Cryopreservation/methods , Semen Preservation/methods , Specimen Handling/methods , Animals , Bodily Secretions/drug effects , Body Fluids/drug effects , Cryoprotective Agents/pharmacology , Male , Semen/drug effects , Semen/metabolism , Sperm Motility/drug effects , Spermatozoa/physiology , Sus scrofa/metabolism , Swine , Temperature
5.
Sci Rep ; 9(1): 14748, 2019 10 14.
Article in English | MEDLINE | ID: mdl-31611589

ABSTRACT

The role of antibiotics (AB) in semen extenders as a potential contribution to the global antimicrobial resistance threat is emerging. Here, we establish an AB-free hypothermic preservation strategy for boar semen and investigate its impact on sperm function, microbial load and fertility after artificial insemination (AI). Spermatozoa (12 boars) preserved in AB-free AndroStar Premium extender at 5 °C maintained high motility, membrane integrity, and a low DNA-fragmentation index throughout 72 h storage and results did not significantly differ from controls stored at 17 °C in extender containing AB (p = 0.072). Likewise, kinetic response of spermatoza to the capacitation stimulus bicarbonate during 180 min incubation in Tyrode's medium did not differ from 17 °C-controls. In a competitive sperm oviduct binding assay, binding indices did not differ between semen stored for 72 h AB-free at 5 °C and 17 °C-controls (n = 6 boars). Bacterial load < 103 CFU/ml after 72 h was measured in 88.9% of samples stored at 5 °C AB-free compared to 97.2% in 17 °C-controls (n = 36 semen pools, 23 boars). Fertility traits of 817 females did not differ significantly between the two semen groups (p > 0.05). In conclusion, a hypothermic semen preservation strategy is presented which offers antibiotic-free storage of boar semen doses.


Subject(s)
Semen Preservation/veterinary , Spermatozoa/metabolism , Swine/physiology , Animals , Cell Survival , Female , Fertility , Insemination, Artificial , Male , Oviducts/metabolism , Semen Preservation/methods , Sperm Motility , Spermatozoa/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...