Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Langmuir ; 40(9): 4801-4810, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38386540

ABSTRACT

Strongly attractive forces act between superhydrophobic surfaces across water due to the formation of a bridging gas capillary. Upon separation, the attraction can range up to tens of micrometers as the gas capillary grows, while gas molecules accumulate in the capillary. We argue that most of these molecules come from the pre-existing gaseous layer found at and within the superhydrophobic coating. In this study, we investigate how the capillary size and the resulting capillary forces are affected by the thickness of the gaseous layer. To this end, we prepared superhydrophobic coatings with different thicknesses by utilizing different numbers of coating cycles of a liquid flame spraying technique. Laser scanning confocal microscopy confirmed an increase in gas layer thickness with an increasing number of coating cycles. Force measurements between such coatings and a hydrophobic colloidal probe revealed attractive forces caused by bridging gas capillaries, and both the capillary size and the range of attraction increased with increasing thickness of the pre-existing gas layer. Hence, our data suggest that the amount of available gas at and in the superhydrophobic coating determines the force range and capillary growth.

2.
Langmuir ; 39(42): 14840-14852, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37824837

ABSTRACT

A fundamental understanding of the interactions between mineral surfaces and amphiphilic surface modification agents is needed for better control over the production and uses of mineral fillers. Here, we controlled the carboxylic acid layer formation conditions on calcite surfaces with high precision via vapor deposition. The properties of the resulting carboxylic acid layers were analyzed using surface-sensitive techniques, such as atomic force microscopy (AFM), contact angle measurements, angle resolved X-ray photoelectron spectroscopy (XPS), and vibrational sum-frequency spectroscopy. A low wettability was achieved with long hydrocarbon chain carboxylic acids such as stearic acid. The stearic acid layer formed by vapor deposition is initially patchy, but with increasing vapor exposure time, the patches grow and condense into a homogeneous layer with a thickness close to that expected for a monolayer as evaluated by AFM and XPS. The build-up process of the layer occurs more rapidly at higher temperatures due to the higher vapor pressure. The stability of the deposited fatty acid layer in the presence of a water droplet increases with the chain length and packing density in the adsorbed layer. Vibrational sum frequency spectroscopy data demonstrate that the stearic acid monolayers on calcite have their alkyl chains in an all-trans conformation and are anisotropically distributed on the plane of the surface, forming epitaxial monolayers. Vibrational spectra also show that the stearic acid molecules interact with the calcite surface through the carboxylic acid headgroup in both its protonated and deprotonated forms. The results presented provide new molecular insights into the properties of adsorbed carboxylic acid layers on calcite.

3.
Sci Rep ; 13(1): 6794, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37100810

ABSTRACT

The formation of a bridging gas capillary between superhydrophobic surfaces in water gives rise to strongly attractive interactions ranging up to several micrometers on separation. However, most liquids used in materials research are oil-based or contain surfactants. Superamphiphobic surfaces repel both water and low-surface-tension liquids. To control the interactions between a superamphiphobic surface and a particle, it needs to be resolved whether and how gas capillaries form in non-polar and low-surface-tension liquids. Such insight will aid advanced functional materials development. Here, we combine laser scanning confocal imaging and colloidal probe atomic force microscopy to elucidate the interaction between a superamphiphobic surface and a hydrophobic microparticle in three liquids with different surface tensions: water (73 mN m-1), ethylene glycol (48 mN m-1) and hexadecane (27 mN m-1). We show that bridging gas capillaries are formed in all three liquids. Force-distance curves between the superamphiphobic surface and the particle reveal strong attractive interactions, where the range and magnitude decrease with liquid surface tension. Comparison of free energy calculations based on the capillary menisci shapes and the force measurements suggest that under our dynamic measurements the gas pressure in the capillary is slightly below ambient.

4.
Langmuir ; 37(48): 14135-14146, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34793681

ABSTRACT

A profound understanding of the properties of unmodified and saturated fatty acid-modified calcite surfaces is essential for elucidating their resistance and stability in the presence of water droplets. Additional insights can be obtained by also studying the effects of carboxylic acid-saturated aqueous solutions. We elucidate surface wettability, structure, and nanomechanical properties beneath and at the edge of a deposited droplet after its evaporation. When calcite was coated by a highly packed monolayer of stearic acid, a hydrophilic region was found at the three-phase contact line. In atomic force microscopy mapping, this region is characterized by low adhesion and a topographical hillock. The surface that previously was covered by the droplet demonstrated a patchy structure of about 6 nm height, implying stearic acid reorganization into a patchy bilayer-like structure. Our data suggest that during droplet reverse dispensing and droplet evaporation, pinning of the three-phase contact line leads to the transport of dissolved fatty carboxylic acid and possibly calcium bicarbonate Ca(HCO3)2 molecules to the contact line boundary. Compared to the surface of intrinsically hydrophobic materials, such as polystyrene, the changes in contact angle and base diameter during droplet evaporation on stearic acid-modified calcite are strikingly different. This difference is due to stearic acid reorganization on the surface and transport to the water-air interface of the droplet. An effect of the evaporating droplet is also observed on unmodified calcite due to dissolution and recrystallization of the calcite surface in the presence of water. In the case where a water droplet saturated with octanoic acid is used instead of water, the stearic acid-coated calcite remains considerably more stable. Our findings are discussed in terms of the coffee-ring effect.


Subject(s)
Calcium Carbonate , Water , Caprylates , Fatty Acids , Surface Properties
5.
Langmuir ; 37(32): 9826-9837, 2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34355909

ABSTRACT

Understanding the wear of mineral fillers is crucial for controlling industrial processes, and in the present work, we examine the wear resistance and nanomechanical properties of bare calcite and stearic acid-modified calcite surfaces under dry and humid conditions at the nanoscale. Measurements under different loads allow us to probe the situation in the absence and presence of abrasive wear. The sliding motion is in general characterized by irregular stick-slip events that at higher loads lead to abrasion of the brittle calcite surface. Bare calcite is hydrophilic, and under humid conditions, a thin water layer is present on the surface. This water layer does not affect the friction force. However, it slightly decreases the wear depth and strongly influences the distribution of wear particles. In contrast, stearic acid-modified surfaces are hydrophobic. Nevertheless, humidity affects the wear characteristics by decreasing the binding strength of stearic acid at higher humidity. A complete monolayer coverage of calcite by stearic acid results in a significant reduction in wear but only a moderate reduction in friction forces at low humidity and no reduction at 75% relative humidity (RH). Thus, our data suggest that the wear reduction does not result from a lowering of the friction force but rather from an increased ductility of the surface region as offered by the stearic acid layer. An incomplete monolayer of stearic acid on the calcite surface provides no reduction in wear regardless of the RH investigated. Clearly, the wear properties of modified calcite surfaces depend crucially on the packing density of the surface modifier and also on the air humidity.

6.
Adv Mater ; 33(36): e2101519, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34313346

ABSTRACT

Cellulose nanocrystals (CNCs) possess the ability to form helical periodic structures that generate structural colors. Due to the helicity, such self-assembled cellulose structures preferentially reflect left-handed circularly polarized light of certain colors, while they remain transparent to right-handed circularly polarized light. This study shows that combination with a liquid crystal enables modulation of the optical response to obtain light reflection of both handedness but with reversed spectral profiles. As a result, the nanophotonic systems provide vibrant structural colors that are tunable via the incident light polarization. The results are attributed to the liquid crystal aligning on the CNC/glucose film, to form a birefringent layer that twists the incident light polarization before interaction with the chiral cellulose nanocomposite. Using a photoresponsive liquid crystal, this effect can further be turned off by exposure to UV light, which switches the nematic liquid crystal into a nonbirefringent isotropic phase. The study highlights the potential of hybrid cellulose systems to create self-assembled yet advanced photoresponsive and polarization-tunable nanophotonics.

7.
Langmuir ; 35(41): 13275-13285, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31547659

ABSTRACT

Superhydrophobic surfaces in the Cassie-Baxter wetting state retain an air layer at the surface which prevents liquid water from reaching into the porous surface structure. In this work we explore how addition of ethanol, which reduces the surface tension, influences the wetting properties of superhydrophobic and smooth hydrophobic surfaces. Wetting properties are measured by dynamic contact angles, and the air layer at the superhydrophobic surface is visualized by laser scanning confocal microscopy. Colloidal probe atomic force microscopy measurements between a hydrophobic microsphere and the macroscopic surfaces showed that the presence of ethanol strongly affects the interaction forces. When the macroscopic surface is superhydrophobic, attractive forces extending up to a few micrometers are observed on retraction in water and in 20 vol % ethanol, signifying the presence of a large and growing gas capillary. Submicrometer attractive forces are observed between the probe particle and a smooth hydrophobic surface, and in this case a smaller gas capillary is formed. Addition of ethanol results in markedly different effects between superhydrophobic and hydrophobic surfaces. In particular, we show that the receding contact angle on the superhydrophobic surface is of paramount importance for describing the interaction forces.

8.
ACS Nano ; 13(2): 2246-2252, 2019 Feb 26.
Article in English | MEDLINE | ID: mdl-30707561

ABSTRACT

The formation of a bridging gas meniscus via cavitation or nanobubbles is considered the most likely origin of the submicrometer long-range attractive forces measured between hydrophobic surfaces in aqueous solution. However, the dynamics of the formation and evolution of the gas meniscus is still under debate, in particular, in the presence of a thin air layer on a superhydrophobic surface. On superhydrophobic surfaces the range can even exceed 10 µm. Here, we report microscopic images of the formation and growth of a gas meniscus during force measurements between a superhydrophobic surface and a hydrophobic microsphere immersed in water. This is achieved by combining laser scanning confocal microscopy and colloidal probe atomic force microscopy. The configuration allows determination of the volume and shape of the meniscus, together with direct calculation of the Young-Laplace capillary pressure. The long-range attractive interactions acting on separation are due to meniscus formation and volume growth as air is transported from the surface layer.

9.
J Colloid Interface Sci ; 541: 42-55, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30682592

ABSTRACT

Understanding the complex and dynamic nature of calcite surfaces under ambient conditions is important for optimizing industrial applications. It is essential to identify processes, their reversibility, and the relevant properties of CaCO3 solid-liquid and solid-gas interfaces under different environmental conditions, such as at increased relative humidity (RH). This work elucidates changes in surface properties on freshly cleaved calcite (topography, wettability and surface forces) as a function of time (≤28 h) at controlled humidity (≤3-95 %RH) and temperature (25.5 °C), evaluated with atomic force microscopy (AFM) and contact angle techniques. In the presence of humidity, the wettability decreased, liquid water capillary forces dominated over van der Waals forces, and surface domains, such as hillocks, height about 7.0 Å, and trenches, depth about -3.5 Å, appeared and grew primarily in lateral dimensions. Hillocks demonstrated lower adhesion and higher deformation in AFM experiments. We propose that the growing surface domains were formed by ion dissolution and diffusion followed by formation of hydrated salt of CaCO3. Upon drying, the height of the hillocks decreased by about 50% suggesting their alteration into dehydrated or less hydrated CaCO3. However, the process was not entirely reversible and crystallization of new domains continued at a reduced rate.

10.
Sci Rep ; 8(1): 3647, 2018 02 26.
Article in English | MEDLINE | ID: mdl-29483613

ABSTRACT

Microcapsules with specific functional properties, related to the capsule wall and core, are highly desired in a number of applications. In this study, hybrid cellulose microcapsules (1.2 ± 0.4 µm in diameter) were prepared by nanoengineering the outer walls of precursor capsules. Depending on the preparation route, capsules with different surface roughness (raspberry or broccoli-like), and thereby different wetting properties, could be obtained. The tunable surface roughness was achieved as a result of the chemical and structural properties of the outer wall of a precursor capsule, which combined with a new processing route allowed in-situ formation of silica nanoparticles (30-40 nm or 70 nm in diameter). By coating glass slides with "broccoli-like" microcapsules (30-40 nm silica nanoparticles), static contact angles above 150° and roll-off angles below 6° were obtained for both water and low surface-tension oil (hexadecane), rendering the substrate superamphiphobic. As a comparison, coatings from raspberry-like capsules were only strongly oleophobic and hydrophobic. The liquid-core of the capsules opens great opportunities to incorporate different functionalities and here hydrophobic superparamagnetic nanoparticles (SPIONs) were encapsulated. As a result, magnetic broccoli-like microcapsules formed an excellent superamphiphobic coating-layer on a curved geometry by simply applying an external magnetic field.

11.
ACS Appl Mater Interfaces ; 6(9): 6487-96, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24713022

ABSTRACT

This work demonstrates the feasibility of superhydrophilic polyelectrolyte brush coatings for anti-icing applications. Five different types of ionic and nonionic polymer brush coatings of 25-100 nm thickness were formed on glass substrates using silane chemistry for surface premodification followed by polymerization via the SI-ATRP route. The cationic [2-(methacryloyloxy)ethyl]trimethylammonium chloride] and the anionic [poly(3-sulfopropyl methacrylate), poly(sodium methacrylate)] polyelectrolyte brushes were further exchanged with H+, Li+, Na+, K+, Ag+, Ca2+, La3+, C16N+, F-, Cl-, BF4-, SO4(2-), and C12SO3- ions. By consecutive measurements of the strength of ice adhesion toward ion-incorporated polymer brushes on glass it was found that Li+ ions reduce ice adhesion by 40% at -18 °C and 70% at -10 °C. Ag+ ions reduce ice adhesion by 80% at -10 °C relative to unmodified glass. In general, superhydrophilic polyelectrolyte brushes exhibit better anti-icing property at -10 °C compared to partially hydrophobic brushes such as poly(methyl methacrylate) and surfactant exchanged polyelectrolyte brushes. The data are interpreted using the concept of a quasi liquid layer (QLL) that is enhanced in the presence of highly hydrated ions at the interface. It is suggested that the ability of ions to coordinate water is directly related to the efficiency of a given anti-icing coating based on the polyelectrolyte brush concept.

12.
Langmuir ; 26(13): 11330-6, 2010 Jul 06.
Article in English | MEDLINE | ID: mdl-20369868

ABSTRACT

TiO(2)@SiO(2) nanopatterns were prepared with the evaporation-induced self-assembly (EISA) technique. The material consists of an ultrathin (approximately 2 nm) layer of titania with hexagonally ordered craters of roughly 30 nm in diameter, on a silica substrate. The open pore structure and high homogeneity of the pattern makes these materials ideal for detailed wetting studies. The nanopatterns were functionalized with a fluoroalkylsilane (FAS), which attached on both titania and silica, resulting in a hydrophobic surface. By irradiating the composite material with UV light for different lengths of time, the hydrophilic/hydrophobic contrast in the nanopattern could be tuned. This is a result of the very different photocatalytic properties of titania and silica. The area fraction covered with FAS, f(FAS), as a function of UV irradiation time was calculated from water contact angle measurements of the composite film and corresponding reference samples, by using existing wetting models for heterogeneous surfaces. The results were compared to area fractions derived from X-ray photoelectron spectroscopy (XPS). f(FAS)-values determined from static water contact angles gave the best agreement with XPS, while advancing and receding contact angles overestimated and underestimated the f(FAS)-values, respectively. The Cassie model gave a slightly better fit to the XPS data than the Israelachivili model.

13.
Anal Chim Acta ; 638(1): 51-7, 2009 Apr 06.
Article in English | MEDLINE | ID: mdl-19298879

ABSTRACT

Phosphopeptide enrichment based on metal oxide affinity chromatography is one of the most powerful tools for studying protein phosphorylation on a large scale. To complement existing metal oxide sorbents, we have recently introduced tin dioxide as a promising alternative. The preparation of SnO(2) microspheres by the nanocasting technique, using silica of different morphology as a template, offers a strategy to prepare materials that vary in their particle size and their porosity. Here, we demonstrate how such stannia materials can be successfully generated and their properties fine-tuned in order to obtain an optimized phosphopeptide enrichment material. We combined data from liquid chromatography-mass spectrometry experiments and physicochemical characterization, including nitrogen physisorption and energy-dispersive X-ray spectroscopy (EDX), to explain the influence of the various experimental parameters.


Subject(s)
Microspheres , Phosphopeptides/analysis , Tin Compounds/chemistry , Amino Acid Sequence , Chromatography, Affinity , Chromatography, Liquid , Mass Spectrometry , Nanotechnology , Particle Size , Phosphopeptides/isolation & purification , Phosphorylation , Porosity
14.
ACS Appl Mater Interfaces ; 1(2): 519-25, 2009 Feb.
Article in English | MEDLINE | ID: mdl-20353245

ABSTRACT

The aim of this research was to explore the use of amine-containing polymeric and low-molar-mass organic protecting agents in the preparation of copper nanoparticles. Particles were synthesized using poly(ethylene imine) (PEI) or tetraethylenepentamine (TEPA) as protecting agents. The resulting particles were studied with UV-vis spectrometry, thermogravimetry, scanning electron microscopy, and transmission electron microscopy, wide-angle X-ray scattering with heating, X-ray photoelectron spectroscopy, and Auger electron spectroscopy. The average crystal sizes for the particles were at room temperature 8.5 and 19.4 nm for PEI and TEPA, respectively, and some surface oxidation was observed. The particles were sintered on paper, and the resistance and resistivity were measured. For Cu/PEI samples, the protecting agent was removed upon sintering at relatively low temperatures (between 150 and 200 degrees C). At this temperature range, particles exhibited a rapid increase in the crystal size. Sintered particles exhibited high conductivity, indicating that these kinds of materials might find use in paper-based printing.

15.
Langmuir ; 24(19): 10625-8, 2008 Oct 07.
Article in English | MEDLINE | ID: mdl-18771300

ABSTRACT

A superhydrophobic material prepared by precipitating calcium phosphate on TiO2 films under in vitro conditions is described. Crystalline calcium phosphate is very porous with octacalcium phosphate as the main phase. The films are made hydrophobic by the surface grafting of a perfluorophosphate surfactant (Zonyl FSE). The as-prepared coatings were strongly hydrophobic, with advancing contact angles exceeding 165 degrees and receding angles exceeding 150 degrees . The formation of the calcium phosphate layer is self-organizing, and the coating is easily functionalized. The material was characterized with dynamic contact angle measurements, SEM, XRD, and XPS. The strong water repellency is explained by the open porous morphology of the calcium phosphate coating together with the successful attachment of the hydrophobic function.


Subject(s)
Biomimetic Materials/chemical synthesis , Hydrophobic and Hydrophilic Interactions , Biomimetic Materials/chemistry , Biomimetics , Calcium Phosphates/chemistry , Microscopy, Electron, Scanning , X-Ray Diffraction
16.
J Colloid Interface Sci ; 326(2): 403-10, 2008 Oct 15.
Article in English | MEDLINE | ID: mdl-18675989

ABSTRACT

The influence of water exposure on the surface properties of plasma-sprayed Cr(2)O(3) and Cr(2)O(3)-25 wt% TiO(2) was studied. It was shown that both plasma-sprayed materials contained Cr(VI) hydrous oxide phases, which dissolved rapidly at the beginning of water exposure. The dissolution continued slowly during the whole water exposure time. The Cr(VI) dissolution was accompanied by a rapid increase in surface IEP value. Both Cr(2)O(3) and Cr(2)O(3)-25 wt% TiO(2) showed similar dissolution, zeta potential, and surface oxidation states. Thus the addition of TiO(2) did not influence the surface properties of the plasma-sprayed Cr(2)O(3).

17.
J Ind Microbiol Biotechnol ; 35(7): 751-60, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18379832

ABSTRACT

Coating of stainless steel with diamond-like carbon or certain fluoropolymers reduced or almost eliminated adhesion and biofilm growth of Staphylococcus epidermidis, Deinococcus geothermalis, Meiothermus silvanus and Pseudoxanthomonas taiwanensis. These species are known to be pertinent biofilm formers on medical implants or in the wet-end of paper machines. Field emission scanning electron microscopic analysis showed that Staph. epidermidis, D. geothermalis and M. silvanus grew on stainless steel using thread-like organelles for adhesion and biofilm formation. The adhesion threads were fewer in number on fluoropolymer-coated steel than on plain steel and absent when the same strains were grown in liquid culture. Psx. taiwanensis adhered to the same surfaces by a mechanism involving cell ghosts on which the biofilm of live cells grew. Hydrophilic (diamond-like carbon) or hydrophobic (fluoropolymer) coatings reduced the adherence of the four test bacteria on different steels. Selected topographic parameters, including root-mean-square roughness (S (q)), skewness (S (sk)) and surface kurtosis (S (ku)), were analysed by atomic force microscopy. The surfaces that best repelled microbial adhesion of the tested bacteria had higher skewness values than those only slightly repelling. Water contact angle, measured (theta (m)) or roughness corrected (theta (y)), affected the tendency for biofilm growth in a different manner for the four test bacteria.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/growth & development , Carbon/pharmacology , Gram-Negative Bacteria/growth & development , Gram-Positive Bacteria/growth & development , Stainless Steel , Bacterial Adhesion , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Organelles/ultrastructure , Polymers/pharmacology
18.
J Colloid Interface Sci ; 313(1): 194-201, 2007 Sep 01.
Article in English | MEDLINE | ID: mdl-17521664

ABSTRACT

The influence of aging in mild aqueous conditions (pH 4, 7 and 9) on surface properties of plasma sprayed oxide was studied using electrophoretic mobility studies and measuring concentrations of dissolved species from exposure liquids. In addition, required acid/base additions to maintain constant pH, redox potentials suspension conductivities were measured. The experiment time was two weeks. The plasma sprayed materials were based on Al(2)O(3), TiO(2) and Cr(2)O(3). Materials based on Al(2)O(3) dissolved easily at pH 4 due to presence of metastable gamma-Al(2)O(3) phase. In addition there was clear change in surface charging properties (zeta potential) of Al(2)O(3) surfaces so that the estimated IEP value drifted from >9 at the beginning of aging and dropped down to 8.5-8.7 after 2 weeks of treatment. Plasma sprayed TiO(2) did not dissolve under the experiment conditions. Even thought the surface charging (zeta potential) changed during the exposure, the estimated IEP remained close to the values reported for pure TiO(2) materials. Plasma sprayed Cr(2)O(3) based materials were also insoluble at the studied pH values. On the other hand, the estimated IEP values deviated radically from the reported PZC values of similar materials.

19.
J Nanosci Nanotechnol ; 6(8): 2438-44, 2006 Aug.
Article in English | MEDLINE | ID: mdl-17037853

ABSTRACT

This paper describes a method by which a porous silica coating layer can be obtained on different apatite particles through a simple sol-gel synthesis route. Sol-gel derived powders of hydroxyapatite (HAP) and beta tricalciumphosphate (beta-TCP) were coated with a mesoporous silica using C16TAB (hexadecyltrimethylammonium bromide) as a template in order to induce mesophase formation. Further calcination of the material removes the template from the mesophase and leaves a highly ordered hexagonal arranged mesoporous silica structure with a core of HAP/beta-TCP. The phase purity of the SiO2/apatite composites has been thoroughly investigated by the means of FT-IR, XRD, and solid state 31P MAS NMR. The phase purity of these materials is shown to be dependent on the solubility properties of the used apatites. The hybrid materials are suitable as a multifunctional biomaterial where osteoconductive properties can be combined with drug delivery.


Subject(s)
Calcium Phosphates/chemistry , Coated Materials, Biocompatible/chemistry , Durapatite/chemistry , Silicon Dioxide/chemistry , Apatites/chemistry , Gels , Magnetic Resonance Spectroscopy/methods , Materials Testing , Microscopy, Electron, Scanning , Normal Distribution , Phase Transition , Powders , Spectroscopy, Fourier Transform Infrared/methods , X-Ray Diffraction/methods
20.
Langmuir ; 22(19): 8209-13, 2006 Sep 12.
Article in English | MEDLINE | ID: mdl-16952264

ABSTRACT

Heterogeneous nucleation and growth of calcium phosphate (CaP) on sol-gel derived TiO(2) coatings was investigated in terms of surface topography and surface energy. The topography of the coatings was derived from AFM measurements, while the surface energy was determined with contact angle measurements. The degree of precipitation was examined with scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The precipitation of CaP was found to be dependent on both topography and surface energy. A high roughness value when combining the RMS roughness parameter S(q) with the number of local maxima per unit area parameter S(ds) enhances CaP formation. The hydrophilicity of the coating was also found to be of importance for CaP formation. We suggest that the water contact angle, which is a direct measure of the hydrophilicity of the surface, may be used to evaluate the surface energy dependent precipitation kinetics rather than using the often applied Lewis base parameter.

SELECTION OF CITATIONS
SEARCH DETAIL
...