Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Evol Biol ; 29(8): 1569-84, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27159261

ABSTRACT

To understand the consequences of ever-changing environment on the dynamics of phenotypic traits, distinguishing between selection processes and individual plasticity is crucial. We examined individual consistency/plasticity in several male secondary sexual traits expressed during the breeding season (white wing and forehead patch size, UV reflectance of white wing patch and dorsal melanin coloration) in a migratory pied flycatcher (Ficedula hypoleuca) population over an 11-year period. Furthermore, we studied carry-over effects of three environmental variables (NAO, a climatic index; NDVI, a vegetation index; and rainfall) at the wintering grounds (during prebreeding moult) on the expression of these breeding plumage traits of pied flycatcher males at individual and population levels. Whereas NAO correlates negatively with moisture in West Africa, NDVI correlates positively with primary production. Forehead patch size and melanin coloration were highly consistent within individuals among years, whereas the consistency of the other two traits was moderate. Wing patch size decreased with higher NAO and increased with higher rainfall and NDVI at the individual level. Interestingly, small-patched males suffered lower survival during high NAO winters than large-patched males, and vice versa during low NAO winters. These counteracting processes meant that the individual-level change was masked at the population level where no relationship was found. Our results provide a good example of how variation in the phenotypic composition of a natural population can be a result of both environment-dependent individual plasticity and short-term microevolution. Moreover, when plasticity and viability selection operate simultaneously, their impacts on population composition may not be evident.


Subject(s)
Passeriformes , Phenotype , Reproduction , Selection, Genetic , Animals , Feathers , Male , Seasons
2.
J Evol Biol ; 27(3): 660-6, 2014 03.
Article in English | MEDLINE | ID: mdl-24494669

ABSTRACT

Mimicry is a widespread phenomenon. Vertebrate visual mimicry often operates in an intraspecific sexual context, with some males resembling conspecific females. Pied flycatcher (Ficedula hypoleuca) dorsal plumage varies from the ancestral black to female-like brown. Experimental studies have shown that conspecific and heterospecific (collared flycatcher, F. albicollis) individuals of both sexes respond, at least initially, to brown individuals as if they were female. We quantified the perceptual and biochemical differences between brown feathers and found that brown pied flycatcher males are indistinguishable from heterospecific, but not from conspecific, females in both aspects. To our knowledge, this is the first evidence of a visual mimetic signalling system in a sexual context where the model is heterospecific to the mimic. By only mimicking heterospecific females, brown pied flycatcher males can establish territories next to the more dominant collared flycatcher in sympatry, suffer less aggression by darker conspecifics in allopatry and preserve within-species sexual recognition throughout the breeding range. A closer look at the evolutionary history and ecology of these two species illustrates how such a mimetic system can evolve. Although likely rare, this phenomenon might not be unique to Ficedula flycatchers.


Subject(s)
Songbirds/physiology , Animals , Female
SELECTION OF CITATIONS
SEARCH DETAIL
...