Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 928: 172217, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38583633

ABSTRACT

Martinique's mangroves, which cover 1.85 ha of the island (<0.1 % of the total area), are considerably vulnerable to local urban, agricultural, and industrial pollutants. Unlike for temperate ecosystems, there are limited indicators that can be used to assess the anthropogenic pressures on mangroves. This study investigated four stations on Martinique Island, with each being subject to varying anthropogenic pressures. An analysis of mangrove sediment cores approximately 18 cm in depth revealed two primary types of pressures on Martinique mangroves: (i) an enrichment in organic matter in the two stations within the highly urbanized bay of Fort-de-France and (ii) agricultural pressure observed in the four studied mangrove stations. This pressure was characterized by contamination, exceeding the regulatory thresholds, with dieldrin, total DDT, and metals (As, Cu and Ni) found in phytosanitary products. The mangroves of Martinique are subjected to varying degrees of anthropogenic pressure, but all are subjected to contamination by organochlorine pesticides. Mangroves within the bay of Fort-de-France experience notably higher pressures compared to those in the island's northern and southern regions. In these contexts, the microbial communities exhibited distinct responses. The microbial biomass and the abundance of bacteria and archaea were higher in the two less-impacted stations, while in the mangrove of Fort-de-France, various phyla typically associated with polluted environments were more prevalent. These differences in the microbiota composition led to the identification of 65 taxa, including Acanthopleuribacteraceae, Spirochaetaceae, and Pirellulaceae, that could potentially serve as indicators of an anthropogenic influence on the mangrove sediments of Martinique Island.


Subject(s)
Environmental Monitoring , Wetlands , Environmental Monitoring/methods , Martinique , Agriculture , Water Pollutants, Chemical/analysis , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Microbiota
2.
Sci Total Environ ; 930: 172612, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38663602

ABSTRACT

Mangroves develop under environmental conditions and anthropogenic pressures whose impact on benthic meiofauna remains poorly understood. It is unclear how meiofauna communities are structured according to local sedimentary conditions. This study was designed to characterize the community structure of meiofauna and nematodes (dominant taxa) and the associated environmental forcings in intertidal mangrove sediments from Mayotte (Indo-West-Pacific), Martinique and Guadeloupe (Caribbean). Sediment cores were sampled at the end of the dry season at low tide on adult mangrove stands with similar immersion time. In each sediment layer, we analyzed redox potential, pH, porewater salinity, grain size, organic matter, metals, organic contaminants, prokaryotes and meiofauna. Our results show that sediments far from cities and agricultural fields trapped site-specific contaminants due to local water transport processes. Some metals, PAHs or pesticides exceeded toxicity thresholds in most of the studied stations, thus being harmful to benthic fauna. The sedimentary environment acts as a filter selecting specific meiofauna communities at station scale only in the Caribbean. In Mayotte, horizontal homogeneity contrasts with vertical heterogeneity of the sedimentary environment and the meiofauna. Nematode genera showed particular distribution patterns horizontally and vertically, suggesting the presence of sediment patches suitable for a restricted pool of genera on each island. Results in the Caribbean are consistent with nested diversity patterns due to environmental filtering. Conversely, horizontal homogeneity at Mayotte would reflect greater dispersal between stations or more spatially homogeneous anthropogenic pressures. The nematode genera present at depth may not be the most specialized, but the most versatile, capable of thriving in different conditions. Terschellingia and Daptonema showed contrasted responses to environmental forcing, likely due to their versatility, while Desmodora showed uniform responses between study areas, except when toxicity thresholds were exceeded. Our results emphasize that a given genus of nematode may respond differently to sedimentary conditions depending on sites.


Subject(s)
Environmental Monitoring , Geologic Sediments , Nematoda , Wetlands , Animals , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Caribbean Region , Guadeloupe , Invertebrates
3.
Sci Total Environ ; 807(Pt 1): 150667, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-34599952

ABSTRACT

The microbial communities inhabiting the Atlantic-East Pacific (AEP) mangroves have been poorly studied, and mostly comprise chronically polluted mangroves. In this study, we characterized changes in the structure and diversity of microbial communities of mangroves along the urban-to-rural gradient of the Cayenne estuary (French Guiana, South America) that experience low human impact. The microbial communities were assigned into 50 phyla. Proteobacteria, Chloroflexi, Acidobacteria, Bacteroidetes, and Planctomycetes were the most abundant taxa. The environmental determinants found to significantly correlated to the microbial communities at these mangroves were granulometry, dieldrin concentration, pH, and total carbon (TC) content. Furthermore, a precise analysis of the sediment highlights the existence of three types of anthropogenic pressure among the stations: (i) organic matter (OM) enrichment due to the proximity to the city and its wastewater treatment plant, (ii) dieldrin contamination, and (iii) naphthalene contamination. These forms of weak anthropogenic pressure seemed to impact the bacterial population size and microbial assemblages. A decrease in Bathyarchaeota, "Candidatus Nitrosopumilus", and Nitrospira genera was observed in mangroves subjected to OM enrichment. Mangroves polluted with organic contaminants were enriched in Desulfobacteraceae, Desulfarculaceae, and Acanthopleuribacteraceae (with dieldrin or polychlorobiphenyl contamination), and Chitinophagaceae and Geobacteraceae (with naphthalene contamination). These findings provide insights into the main environmental factors shaping microbial communities of mangroves in the AEP that experience low human impact and allow for the identification of several potential microbial bioindicators of weak anthropogenic pressure.


Subject(s)
Microbiota , Anthropogenic Effects , Environmental Biomarkers , Estuaries , French Guiana , Geologic Sediments , Humans , Planctomycetes , Wetlands
4.
Mar Pollut Bull ; 172: 112956, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34706477

ABSTRACT

The present pilot study aimed to provide an overview of organic contaminant concentration levels in the littoral ecosystems of the Pertuis seas. The study determined the concentrations of twenty-nine pesticides, six nonylphenols and seven polybrominated diphenyl ethers (PBDEs) in sediments, seawater, Pacific oysters and blue mussels. Oysters accumulated a higher number of pesticides than blue mussels. Indeed, alpha BHC (0.60-0.72 ng/g, ww), chlorfenvinphos (1.65-2.12 ng/g, ww), chlorpyrifos (0.79-0.93 ng/g, ww), chlortoluron (2.50-4.31 ng/g, ww), metolachlor (up to 0.38 ng/g, ww) and parathion (0.56-0.69 ng/g, ww) were quantified in oysters whereas only alpha BHC (0.24-0.31 ng/g, ww), was quantified in mussels. The present results also revealed that the POPs detected in water or sediments were not ultimately found accumulated in bivalves. Other molecules such as methylparathion and BDE47 were quantified in sediments. These molecules, BDE99 and one nonylphenol (OP2OE) were quantified in seawater. Finally, the comparison with the available environmental guidelines showed that the values measured were at concentrations not considered to cause adverse effects at the populations' level except for chlortoluron in seawater (15-50 ng/L).


Subject(s)
Mytilus edulis , Pesticides , Water Pollutants, Chemical , Animals , Ecosystem , Environmental Monitoring , Halogenated Diphenyl Ethers/analysis , Pesticides/analysis , Phenols , Pilot Projects , Water Pollutants, Chemical/analysis
5.
Sci Total Environ ; 749: 141651, 2020 Dec 20.
Article in English | MEDLINE | ID: mdl-32836131

ABSTRACT

Plastic pollution is a source of chemical to the environment and wildlife. Despite the ubiquity of plastic pollution and thus plastic additive in the environment, plastic additives have been studied to a limited extend. As a prerequisite to a study aiming to evaluate the leaching of a common additive used as an antioxidant (Irgafos® 168) from polyethylene microparticles, an inventory of the potential background contamination of the laboratory workplace was done. In this study, Irgafos® 168 (tris(2,4-ditert-butylphenyl) phosphite) and its oxidized form (tris (2,4-ditert-butylphenyl) phosphate) were quantified in different laboratory reagents, including the plastic packaging and the powders, using Pyrolysis-GC/MS. At least one form of Irgafos® 168 was detected in all tested laboratory reagents with higher concentrations in caps and bottles as compared to the powders. Additionally, oxidized Irgafos® 168 was also found in the reverse osmosed and deionized water container used in the laboratory. The same profile of contamination, i.e. higher concentration of the oxidized form and higher concentrations in acidic reagents, was observed when comparing the reagent and their respective containers suggesting that the additive is leaching from the container into the powder. Overall, this study demonstrates that the antioxidant additive Irgafos® 168 is ubiquitous in the laboratory workplace. Plastic additives such as Irgafos® 168 can therefore largely interfere and biased ecotoxicological and toxicological studies especially using environmentally relevant concentrations of microplastics. The source, fate and effects of plastic additive from plastic debris should be carefully considered in future studies that require setting up methods to overcome these contaminations.

6.
Water Res ; 179: 115890, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32402865

ABSTRACT

Pearl-farming leads to significant plastic pollution in French Polynesia (FP) as the end of life of most farming gear is currently poorly managed. Plastic debris released into the aquatic environment accumulates, with potentially detrimental effects on the lagoon ecosystem and pearl oyster Pinctada margaritifera, a species of ecological, commercial and social value. Here, we tested the effects of leachates from new (N) and aged (A) plastic pearl-farming gear (spat collector and synthetic rope) obtained after 24 h and 120 h incubation, on the embryo-larval development of the pearl oyster using an in-vitro assay. Embryos were exposed for 24 h and 48 h to a negative control (0) and the leachate from 0.1, 1, 10 and 100 g of plastic. L-1. After 24 h exposure to leachate at 100 g.L-1, effects were observed on embryo development (-38% to -60% of formed larvae) and mortality (+72% to +82%). Chemical analyses of plastic gear indicated the presence of 26 compounds, consisting of organic contaminants (PAHs) and additives (mainly phthalates). Screening of leachates demonstrated that these compounds leach into the surrounding seawater with an additional detection of pesticides. Higher levels of phthalates were measured in leachates obtained from new (6.7-9.1 µg.L-1) than from aged (0.4-0.5 µg.L-1) plastics, which could be part of the explanation of the clear difference in toxicity observed after 48 h exposure at lower concentrations (0.1-10 g.L-1), associated with mortality ranging from 26 to 86% and 17-28%, respectively. Overall, this study suggests that plastic gear used in the pearl-farming industry releases significant amounts of hazardous chemicals over their lifetime, which may affect pearl oyster development that call for in-situ exploration.


Subject(s)
Pinctada , Agriculture , Animals , Ecosystem , Plastics , Polynesia
7.
Environ Pollut ; 250: 807-819, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31039474

ABSTRACT

Nowadays, environmental pollution by microplastics (<5 mm; MP) is a major issue. MP are contaminating marine organisms consumed by humans. This work studied MP contamination in two bivalve species of commercial interest: blue mussel (Mytilus edulis) and common cockle (Cerastoderma edule) sampled on the Channel coastlines (France). In parallel, 13 plastic additives and 27 hydrophobic organic compounds (HOC) were quantified in bivalves flesh using SBSE-TD-GS-MS/MS to explore a possible relationship between their concentrations and MP contamination levels. MP were extracted using a 10% potassium hydroxide digestion method then identified by µ-Raman spectroscopy. The proportion of contaminated bivalves by MP ranged from 34 to 58%. Blue mussels and common cockles exhibited 0.76 ±â€¯0.40 and 2.46 ±â€¯1.16 MP/individual and between 0.15 ±â€¯0.06 and 0.74 ±â€¯0.35 MP/g of tissue wet weight. Some HOC and plastic additives were detected in bivalves. However, no significant Pearson or Spearman correlation was found between MP loads and plastic additives or HOC concentrations in bivalve tissues for the two species.


Subject(s)
Cardiidae/chemistry , Environmental Monitoring/methods , Plastics/analysis , Water Pollutants, Chemical/analysis , Animals , Aquatic Organisms/chemistry , Food Contamination/analysis , France , Humans , Mytilus edulis/chemistry , Seafood/analysis
8.
Mar Pollut Bull ; 127: 626-636, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29475706

ABSTRACT

A test program was conducted at laboratory and pilot scale to assess the ability of clays used in drilling mud (calcite, bentonite and barite) to create oil-mineral aggregates and disperse crude oil under arctic conditions. Laboratory tests were performed in order to determine the most efficient conditions (type of clay, MOR (Mineral/Oil Ratio), mixing energy) for OMA (Oil Mineral Aggregate) formation. The dispersion rates of four crude oils were assessed at two salinities. Dispersion was characterized in terms of oil concentration in the water column and median OMA size. Calcite appeared to be the best candidate at a MOR of 2:5. High mixing energy was required to initiate OMA formation and low energy was then necessary to prevent the OMAs from resurfacing. Oil dispersion using Corexit 9500 was compared with oil dispersion using mineral fines.


Subject(s)
Barium Sulfate/chemistry , Bentonite/chemistry , Calcium Carbonate/chemistry , Petroleum Pollution/analysis , Petroleum/analysis , Water Pollutants, Chemical/analysis , Arctic Regions , Models, Theoretical , Particle Size , Pilot Projects , Salinity , Seawater/chemistry
9.
Chemosphere ; 182: 781-793, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28545000

ABSTRACT

Plastics debris, especially microplastics, have been found worldwide in all marine compartments. Much research has been carried out on adsorbed pollutants on plastic pieces and hydrophobic organic compounds (HOC) associated with microplastics. However, only a few studies have focused on plastic additives. These chemicals are incorporated into plastics from which they can leach out as most of them are not chemically bound. As a consequence of plastic accumulation and fragmentation in oceans, plastic additives could represent an increasing ecotoxicological risk for marine organisms. The present work reviewed the main class of plastic additives identified in the literature, their occurrence in the marine environment, as well as their effects on and transfers to marine organisms. This work identified polybrominated diphenyl ethers (PBDE), phthalates, nonylphenols (NP), bisphenol A (BPA) and antioxidants as the most common plastic additives found in marine environments. Moreover, transfer of these plastic additives to marine organisms has been demonstrated both in laboratory and field studies. Upcoming research focusing on the toxicity of microplastics should include these plastic additives as potential hazards for marine organisms, and a greater focus on the transport and fate of plastic additives is now required considering that these chemicals may easily leach out from plastics.


Subject(s)
Aquatic Organisms/drug effects , Plastics/chemistry , Seawater/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity , Ecotoxicology , Oceans and Seas
10.
Environ Sci Pollut Res Int ; 22(20): 15370-6, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26062462

ABSTRACT

The present study aimed to examine whether the use of dispersant would be suitable for favoring the hydrocarbon degradation in coastal marine sediments without impacting negatively micro- and macrobenthic organisms. Mudflat sediments, maintained during 286 days in mesocosms designed to simulate natural conditions, were contaminated or not with Ural blend crude oil (REBCO) and treated or not with third-generation dispersant (Finasol OSR52). While the dispersant did not lead to an increase of hydrocarbon biodegradation, its use enables an attenuation of more than 55 % of the sediment concentration of total petroleum hydrocarbons (TPH). Canonical correspondence analysis (CCA) correlating T-RFLP patterns with the hydrocarbon content and bacterial abundance indicated weak differences between the different treatments except for the mesocosm treated with oil and dispersant for which a higher bacterial biomass was observed. The use of the dispersant did not significantly decrease the macrobenthic species richness or macroorganisms' densities in uncontaminated or contaminated conditions. However, even if the structure of the macrobenthic communities was not affected, when used in combination with oil, biological sediment reworking coefficient was negatively impacted. Although the use of the dispersant may be worth considering in order to accelerate the attenuation of hydrocarbon-contaminated mudflat sediments, long-term effects on functional aspects of the benthic system such as bioturbation and bacterial activity should be carefully studied before.


Subject(s)
Detergents/chemistry , Geologic Sediments , Petroleum Pollution , Bacteria/genetics , Bacteria/metabolism , Biodegradation, Environmental , Geologic Sediments/chemistry , Geologic Sediments/microbiology , Hydrocarbons/analysis , Hydrocarbons/chemistry , Hydrocarbons/metabolism , Organic Chemicals/chemistry , Petroleum/metabolism , Petroleum Pollution/analysis , Polymorphism, Restriction Fragment Length , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics
11.
Environ Sci Pollut Res Int ; 22(20): 15260-72, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25997808

ABSTRACT

To study the impact of oxygen regimes on the removal of polycylic aromatic hydrocarbons (PAHs) in oil-spill-affected coastal marine sediments, we used a thin-layer incubation method to ensure that the incubated sediment was fully oxic, anoxic, or was influenced by oxic-anoxic switches without sediment stirring. Hydrocarbon content and microbial assemblages were followed during 60 days to determine PAH degradation kinetics and microbial community dynamics according to the oxygenation regimes. The highest PAH removal, with 69 % reduction, was obtained at the end of the experiment under oxic conditions, whereas weaker removals were obtained under oscillating and anoxic conditions (18 and 12 %, respectively). Bacterial community structure during the experiment was determined using a dual 16S rRNA genes/16S rRNA transcripts approach, allowing the characterization of metabolically active bacteria responsible for the functioning of the bacterial community in the contaminated sediment. The shift of the metabolically active bacterial communities showed that the selection of first responders belonged to Pseudomonas spp. and Labrenzia sp. and included an unidentified Deltaproteobacteria-irrespective of the oxygen regime-followed by the selection of late responders adapted to the oxygen regime. A novel unaffiliated phylotype (B38) was highly active during the last stage of the experiment, at which time, the low-molecular-weight (LMW) PAH biodegradation rates were significant for permanent oxic- and oxygen-oscillating conditions, suggesting that this novel phylotype plays an active role during the restoration phase of the studied ecosystem.


Subject(s)
Bacteria , Geologic Sediments/microbiology , Hydrocarbons/metabolism , Oxygen/metabolism , Petroleum Pollution , Water Pollutants, Chemical/metabolism , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Biodegradation, Environmental , Ecosystem , Geologic Sediments/chemistry , Hydrocarbons/analysis , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Water Pollutants, Chemical/analysis
12.
Environ Sci Pollut Res Int ; 22(20): 15248-59, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25847440

ABSTRACT

The present study aimed to examine whether the physical reworking of sediments by harrowing would be suitable for favouring the hydrocarbon degradation in coastal marine sediments. Mudflat sediments were maintained in mesocosms under conditions as closer as possible to those prevailing in natural environments with tidal cycles. Sediments were contaminated with Ural blend crude oil, and in half of them, harrowing treatment was applied in order to mimic physical reworking of surface sediments. Hydrocarbon distribution within the sediment and its removal was followed during 286 days. The harrowing treatment allowed hydrocarbon compounds to penetrate the first 6 cm of the sediments, and biodegradation indexes (such as n-C18/phytane) indicated that biodegradation started 90 days before that observed in untreated control mesocosms. However, the harrowing treatment had a severe impact on benthic organisms reducing drastically the macrofaunal abundance and diversity. In the harrowing-treated mesocosms, the bacterial abundance, determined by 16S rRNA gene Q-PCR, was slightly increased; and terminal restriction fragment length polymorphism (T-RFLP) analyses of 16S rRNA genes showed distinct and specific bacterial community structure. Co-occurrence network and canonical correspondence analyses (CCA) based on T-RFLP data indicated the main correlations between bacterial operational taxonomic units (OTUs) as well as the associations between OTUs and hydrocarbon compound contents further supported by clustered correlation (ClusCor) analysis. The analyses highlighted the OTUs constituting the network structural bases involved in hydrocarbon degradation. Negative correlations indicated the possible shifts in bacterial communities that occurred during the ecological succession.


Subject(s)
Bacteria/metabolism , Geologic Sediments/microbiology , Hydrocarbons/metabolism , Petroleum/metabolism , Water Pollutants, Chemical/metabolism , Bacteria/genetics , Bacteria/isolation & purification , Biodegradation, Environmental , DNA, Bacterial/genetics , Geologic Sediments/chemistry , Hydrocarbons/analysis , Petroleum/analysis , Phylogeny , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Water Pollutants, Chemical/analysis
13.
PLoS One ; 8(6): e65347, 2013.
Article in English | MEDLINE | ID: mdl-23762350

ABSTRACT

Oil spills threaten coastlines where biological processes supply essential ecosystem services. Therefore, it is crucial to understand how oil influences the microbial communities in sediments that play key roles in ecosystem functioning. Ecosystems such as sediments are characterized by intensive bioturbation due to burrowing macrofauna that may modify the microbial metabolisms. It is thus essential to consider the bioturbation when determining the impact of oil on microbial communities. In this study, an experimental laboratory device maintaining pristine collected mudflat sediments in microcosms closer to true environmental conditions--with tidal cycles and natural seawater--was used to simulate an oil spill under bioturbation conditions. Different conditions were applied to the microcosms including an addition of: standardized oil (Blend Arabian Light crude oil, 25.6 mg.g⁻¹ wet sediment), the common burrowing organism Hediste (Nereis) diversicolor and both the oil and H. diversicolor. The addition of H. diversicolor and its associated bioturbation did not affect the removal of petroleum hydrocarbons. After 270 days, 60% of hydrocarbons had been removed in all microcosms irrespective of the H. diversicolor addition. However, 16S-rRNA gene and 16S-cDNA T-RFLP and RT-PCR-amplicon libraries analysis showed an effect of the condition on the bacterial community structure, composition, and dynamics, supported by PerMANOVA analysis. The 16S-cDNA libraries from microcosms where H. diversicolor was added (oiled and un-oiled) showed a marked dominance of sequences related to Gammaproteobacteria. However, in the oiled-library sequences associated to Deltaproteobacteria and Bacteroidetes were also highly represented. The 16S-cDNA libraries from oiled-microcosms (with and without H. diversicolor addition) revealed two distinct microbial communities characterized by different phylotypes associated to known hydrocarbonoclastic bacteria and dominated by Gammaproteobacteria and Deltaproteobacteria. In the oiled-microcosms, the addition of H. diversicolor reduced the phylotype-richness, sequences associated to Actinobacteria, Firmicutes and Plantomycetes were not detected. These observations highlight the influence of the bioturbation on the bacterial community structure without affecting the biodegradation capacities.


Subject(s)
Bacteria/classification , Bacteria/genetics , DNA, Bacterial/analysis , Geologic Sediments/analysis , Hydrocarbons/analysis , Petroleum Pollution/adverse effects , RNA, Ribosomal, 16S/analysis , Bacteria/growth & development , DNA, Ribosomal Spacer/analysis , Gene Library , Geologic Sediments/microbiology , Phylogeny , Polymorphism, Restriction Fragment Length , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA
14.
Res Microbiol ; 162(9): 888-95, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21530651

ABSTRACT

Little is known about microbial communities involved in hydrocarbon degradation, whether it be their structural and functional diversity or their response to environmental constraints such as oxygen fluctuation. Here, current knowledge of the impact of diversity and redox oscillations upon ecosystem processes is reviewed. In addition, we present the main conclusions of our studies in this field. Oxic/anoxic oscillations had a strong impact upon bacterial community structures, influencing their ability to degrade hydrocarbons and their capacity to reduce hydrocarbon toxicity. Furthermore, a decrease in functional diversity has a strong impact on pollutant degradation.


Subject(s)
Microbial Consortia/physiology , Polycyclic Aromatic Hydrocarbons/metabolism , Sewage/microbiology , Soil Microbiology , Soil Pollutants/metabolism , Aerobiosis , Anaerobiosis , Biodegradation, Environmental , Biodiversity , Ecosystem
15.
Environ Sci Pollut Res Int ; 18(6): 1022-32, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21387203

ABSTRACT

PURPOSE: We studied the effect of alternations of aeration on both the autochthonous bacterial communities from an oily sludge to the endogenous polycyclic aromatic hydrocarbons (PAH) biodegradation compared to a permanent oxic condition. METHODS: Genomic and transcriptional analyses associated with chemical measurements were used to assess the dynamics of bacteria coupled to PAH removal during an incubation of 26 days. RESULTS AND CONCLUSIONS: The autochthonous bacterial communities of an oil sludge showed a strong potential to adapt and degrade PAH when they were subjected to alternating anoxic/oxic conditions, as well as under an oxic condition. In addition, changes in the bacterial communities were related to the different phases of hydrocarbon degradation, and the removal efficiency of PAH was similar in both switching and permanent oxic conditions. This methodology could be useful for an alternative solution of oil sludge treatment with a low-cost processing, as its efficiency is similar to that of a permanent oxic incubation which is more expensive in oxygen supply.


Subject(s)
Bacteria/metabolism , Polycyclic Aromatic Hydrocarbons/analysis , Sewage/chemistry , Sewage/microbiology , Soil Pollutants/analysis , Aerobiosis , Anaerobiosis , Bacteria/genetics , Biodegradation, Environmental , Biomass , DNA/isolation & purification , Gene Library , Oils/metabolism , Petroleum , Polycyclic Aromatic Hydrocarbons/metabolism , RNA/isolation & purification , Sequence Analysis, DNA , Soil Microbiology , Soil Pollutants/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...