Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Type of study
Publication year range
1.
Sci Rep ; 10(1): 10429, 2020 06 26.
Article in English | MEDLINE | ID: mdl-32591557

ABSTRACT

Seeds constitute a key physiological stage in plants life cycle. During seed germination, there is a spatial-temporal imbibition pattern that correlates with described physiological processes. However, only the moment of testa rupture has been described as a critical, discrete stage. Could a specific relative water content (RWC) value reflect a physiological stage useful for comparisons between seed batches? We tracked seed-by-seed imbibition during germination to homogenize sampling and selected a transcriptomic approach to analyse the physiological transitions that occur in seed batches collected in different years and with contrasting phenotypic responses to a priming treatment. The seed RWC reflected the transcriptional transitions that occur during germination, regardless of imbibition time or collection year, and revealed a set of biological processes that occur in the dry seed and during early germination are associated with the phenotypic response to priming. As climate shifts, so do the timing of developmental events important for determining organismal fitness, and poses another challenge to the comprehension of molecular and physiological processes driving the interaction between organisms and environment. In this study, we demonstrate that the use of physiological traits, specific to a particular developmental stage, is a reliable time-independent approach.


Subject(s)
Ceiba/physiology , Germination/physiology , Seeds/chemistry , Water/analysis , Gene Expression Regulation, Plant , Transcriptome
2.
Rev. biol. trop ; 68(1)mar. 2020.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1507645

ABSTRACT

Introducción: Pteridium aquilinum es un helecho heliófilo ampliamente distribuido en México. Es una especie pionera que usualmente se encuentra en hábitats alterados y tiene gran relevancia ecológica por sus propiedades alelopáticas, su resistencia al fuego y a condiciones de sequía. Objetivo: Realizar una descripción integral de la forma y ornamentación de las esporas de P. aquilinum, así como de la morfogénesis del gametofito, incluyendo el tipo de germinación y el desarrollo protálico (resaltando su morfología). Además, describir la anatomía del esporofito joven desarrollado en condiciones in vitro. Metodología: Se utilizó microscopía electrónica de barrido y técnica histológica de parafina para la descripción de las fases del gametofito y esporofito. Resultados: Las esporas son globulares y el trilete tiene ornamentación granulada, mientras que su germinación fue de tipo Vittaria y el desarrollo protálico correspondió al tipo Adiantum. Los anteridios se observaron 13 días después de la siembra, mientras que los arquegonios surgieron al día 17. La primera hoja del esporofito apareció entre los días 60 y 70. Al cuarto mes, la fase esporofítica desarrollada in vitro mostró la anatomía típica de la especie a esta edad, dado que no presentó vitrificación. El análisis histológico del rizoma, la base del peciolo, el raquis de primer orden y la lámina mostraron los sistemas de tres tejidos bien diferenciados. Las modificaciones anatómicas observadas in vitro, como una dictiostela monocíclica y sólo una banda de esclerénquima en el rizoma, podrían atribuirse a la edad de los individuos. Por otra parte, los estomas están presentes en la superficie adaxial de la lámina, que corresponde al tipo anomocítico. Aunque estos estomas se formaron en condiciones in vitro, es importante resaltar que son completamente funcionales. Conclusiones: Nuestro trabajo describe por primera vez la morfo-anatomía de las fases gametofítica y esporofítica del ciclo de vida de P. aquilinum en condiciones in vitro. Nuestros resultados posiblemente permitan la exploración con mayor profundidad de las propiedades biológicas, fisiológicas y ecológicas de la especie.


Introduction: Pteridium aquilinum is a heliophilous fern widely distributed in Mexico. It is a pioneer species usually found within disturbed habitats with high ecological relevance because of its allelopathic properties, its resistance to fire and drought conditions. Objective: Provide an integrative description regarding P. aquilinum spores shape and ornamentation, and also on gametophyte morphogenesis, including the type of germination and the prothallic development (highlighting its morphology). Furthermore, the anatomy of young sporophyte grown under in vitro conditions was described. Methods: We used scanning electron microscopy and histological paraffin technique to describe the gametophytic and sporophytic phases. Results: The evaluation of the spores showed the presence of globular morphology and triletes with granulated ornamentation; while their germination was Vittaria-type, the prothallic development corresponded to the Adiantum-type. The antheridia were observed 13 days following to the sowing, whereas archegonia arose at day 17. The first leaf of the sporophyte appeared between days 60 and 70. At fourth month, the in vitro grown sporophyte showed the typical anatomy of the individuals of the species at this age, since it did not exhibit vitrification. The histological analysis of rhizome, the petiole base, first order rachis and lamina showed the three tissue systems well differentiated. The anatomical modifications observed in vitro, such as a non-polycyclic dictyostele and just one band sclerenchyma in the rhizome, may be attributed to the individuals age. Moreover, the stomata are present on the adaxial surface of lamina, corresponding to the anomocytic type. Although these stomata were developed under in vitro conditions, it is important to highlight that they are completely functional. Conclusions: Our work describes for the first time the morpho-anatomy of both the gametophytic and the sporophytic phases in the life cycle of P. aquilinum under in vitro conditions. Our results indicate that this method will allow deeper exploration of biological, physiological and ecological properties of the species.

3.
J Plant Physiol ; 231: 105-109, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30253266

ABSTRACT

Auxin is involved in hypocotyl elongation in response to different environmental factors. BIIDXI is a cell wall DUF642 protein that participates in the regulation of the degree of pectin-methylesterification of the cell wall in different tissues, including hypocotyls. Under continuous light, bdx-1 seedlings presented longer hypocotyls than those of WT, while BIIDXI-overexpressed hypocotyls were auxin resistant. Auxin accumulation was observed in epidermal cells from bdx-1 hypocotyls, and the distribution pattern of PIN1 proteins differed. Moreover, the gravitropic response of bdx-1, a process that is highly dependent on auxin flux, was increased. In this study, we determined that BIIDXI is involved in hypocotyl elongation through the regulation of auxin flux.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/growth & development , Carrier Proteins/physiology , Cell Wall/metabolism , Hypocotyl/growth & development , Indoleacetic Acids/metabolism , Plant Growth Regulators/metabolism , Arabidopsis/metabolism , Hypocotyl/metabolism
4.
Biochem Biophys Res Commun ; 495(1): 639-645, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29137987

ABSTRACT

The endosperm is a transitory structure involved in proper embryo elongation. The cell walls of mature seed endosperm are generally composed of a uniform distribution of cellulose, unesterified homogalacturonans, and arabinans. Recent studies suggest that changes in cell wall properties during endosperm development could be related to embryo growth. The degree of methyl esterification of homogalacturonans may be involved in this endosperm tissue remodelling. The relevance of the degree of homogalacturonan methyl esterification during seed development was determined by immunohistochemical analyses using a panel of probes with specificity for homogalaturonans with different degrees of methyl esterification. Low-esterified and un-esterified homogalacturonans were abundant in endosperm cells during embryo bending and were also detected in mature embryos. BIDXII (BDX) could be involved in seed development, because bdx-1 mutants had misshapen embryos. The methyl esterification pattern described for WT seeds was different during bdx-1 seed development; un-esterified homogalacturonans were scarcely present in the cell walls of endosperm in bending embryos and mature seeds. Our results suggested that the degree of methyl esterification of homogalacturonans in the endosperm cell wall may be involved in proper embryo development.


Subject(s)
Arabidopsis/embryology , Arabidopsis/physiology , Endosperm/embryology , Endosperm/metabolism , Pectins/metabolism , Seeds/physiology , Arabidopsis Proteins/metabolism , Carrier Proteins/metabolism , Embryonic Development/physiology , Esterification
5.
Ecol Evol ; 6(15): 5542-5556, 2016 08.
Article in English | MEDLINE | ID: mdl-27942375

ABSTRACT

The high prevalence of dioecy in marine angiosperms or seagrasses (>50% of all species) is thought to enforce cross-fertilization. However, seagrasses are clonal plants, and they may still be subject to sibling-mating or bi-parental inbreeding if the genetic neighborhood is smaller than the size of the genets. We tested this by determining the genetic neighborhoods of the dioecious seagrass Thalassia testudinum at two sites (Back-Reef and Mid-Lagoon) in Puerto Morelos Reef Lagoon, Mexico, by measuring dispersal of pollen and seeds in situ, and by fine-scale spatial autocorrelation analysis with eight polymorphic microsatellite DNA markers. Prevalence of inbreeding was verified by estimating pairwise kinship coefficients; and by analysing the genotypes of seedlings grown from seeds in mesocosms. Average dispersal of pollen was 0.3-1.6 m (max. 4.8 m) and of seeds was 0.3-0.4 m (max. 1.8 m), resulting in a neighborhood area of 7.4 m2 (range 3.4-11.4 m2) at Back-Reef and 1.9 (range 1.87-1.92 m2) at Mid-Lagoon. Neighborhood area (Na) derived from spatial autocorrelation was 0.1-20.5 m2 at Back-Reef and 0.1-16.9 m2 at Mid-Lagoon. Maximal extensions of the genets, in 19 × 30 m plots, were 19.2 m (median 7.5 m) and 10.8 m (median 4.8 m) at Back-Reef and Mid-Lagoon. There was no indication of deficit or excess of heterozygotes nor were coefficients of inbreeding (FIS) significant. The seedlings did not show statistically significant deficit of heterozygotes (except for 1 locus at Back-Reef). Contrary to our expectations, we did not find evidence of bi-parental inbreeding in this dioecious seagrass with large genets but small genetic neighborhoods. Proposed mechanisms to avoid bi-parental inbreeding are possible selection against homozygotes during fecundation or ovule development. Additionally, the genets grew highly dispersed (aggregation index Ac was 0.09 and 0.10 for Back-Reef and Mid-Lagoon, respectively); such highly dispersed guerrilla-like clonal growth form likely increases the probability of crossing between different potentially unrelated genets.

6.
Plant Physiol ; 161(1): 97-107, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23150644

ABSTRACT

In Solanaceae, the self-incompatibility S-RNase and S-locus F-box interactions define self-pollen recognition and rejection in an S-specific manner. This interaction triggers a cascade of events involving other gene products unlinked to the S-locus that are crucial to the self-incompatibility response. To date, two essential pistil-modifier genes, 120K and High Top-Band (HT-B), have been identified in Nicotiana species. However, biochemistry and genetics indicate that additional modifier genes are required. We recently reported a Kunitz-type proteinase inhibitor, named NaStEP (for Nicotiana alata Stigma-Expressed Protein), that is highly expressed in the stigmas of self-incompatible Nicotiana species. Here, we report the proteinase inhibitor activity of NaStEP. NaStEP is taken up by both compatible and incompatible pollen tubes, but its suppression in Nicotiana spp. transgenic plants disrupts S-specific pollen rejection; therefore, NaStEP is a novel pistil-modifier gene. Furthermore, HT-B levels within the pollen tubes are reduced when NaStEP-suppressed pistils are pollinated with either compatible or incompatible pollen. In wild-type self-incompatible N. alata, in contrast, HT-B degradation occurs preferentially in compatible pollinations. Taken together, these data show that the presence of NaStEP is required for the stability of HT-B inside pollen tubes during the rejection response, but the underlying mechanism is currently unknown.


Subject(s)
Enzyme Inhibitors/metabolism , Nicotiana/metabolism , Peptides/metabolism , Plant Proteins/metabolism , Pollen Tube/metabolism , Self-Incompatibility in Flowering Plants , Amino Acid Sequence , Enzyme Activation , Genes, Plant , Molecular Sequence Data , Peptides/genetics , Plant Extracts/metabolism , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Pollen Tube/genetics , Pollination , Protein Interaction Mapping , Protein Stability , Protein Structure, Secondary , Proteolysis , RNA Interference , Subtilisin/antagonists & inhibitors , Nicotiana/genetics
7.
J Exp Bot ; 59(11): 3187-201, 2008.
Article in English | MEDLINE | ID: mdl-18689443

ABSTRACT

After landing on a wet stigma, pollen grains hydrate and germination generally occurs. However, there is no certainty of the pollen tube growth through the style to reach the ovary. The pistil is a gatekeeper that evolved in many species to recognize and reject the self-pollen, avoiding endogamy and encouraging cross-pollination. However, recognition is a complex process, and specific factors are needed. Here the isolation and characterization of a stigma-specific protein from N. alata, NaStEP (N. alata Stigma Expressed Protein), that is homologous to Kunitz-type proteinase inhibitors, are reported. Activity gel assays showed that NaStEP is not a functional serine proteinase inhibitor. Immunohistochemical and protein blot analyses revealed that NaStEP is detectable in stigmas of self-incompatible (SI) species N. alata, N. forgetiana, and N. bonariensis, but not in self-compatible (SC) species N. tabacum, N. plumbaginifolia, N. benthamiana, N. longiflora, and N. glauca. NaStEP contains the vacuolar targeting sequence NPIVL, and immunocytochemistry experiments showed vacuolar localization in unpollinated stigmas. After self-pollination or pollination with pollen from the SC species N. tabacum or N. plumbaginifolia, NaStEP was also found in the stigmatic exudate. The synthesis and presence in the stigmatic exudate of this protein was strongly induced in N. alata following incompatible pollination with N. tabacum pollen. The transfer of NaStEP to the stigmatic exudate was accompanied by perforation of the stigmatic cell wall, which appeared to release the vacuolar contents to the apoplastic space. The increase in NaStEP synthesis after pollination and its presence in the stigmatic exudates suggest that this protein may play a role in the early pollen-stigma interactions that regulate pollen tube growth in Nicotiana.


Subject(s)
Flowers/metabolism , Nicotiana/metabolism , Plant Proteins/biosynthesis , Pollination , Vacuoles/metabolism , Amino Acid Sequence , Molecular Sequence Data , Plant Exudates/metabolism , Plant Proteins/genetics , Pollen Tube/growth & development , Nicotiana/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...