Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Int J Mol Sci ; 24(2)2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36675171

ABSTRACT

Titanium beta alloys represent the new generation of materials for the manufacturing of joint implants. Their Young's modulus is lower and thus closer to the bone tissue compared to commonly used alloys. The surface tribological properties of these materials should be improved by ion implantation. The influence of this surface treatment on corrosion behaviour is unknown. The surface of Ti-36Nb-6Ta, Ti-36Nb-4Zr, and Ti-39Nb titanium ß-alloys was modified using nitrogen ion implantation. X-ray photoelectron spectroscopy was used for surface analysis, which showed the presence of titanium, niobium, and tantalum nitrides in the treated samples and the elimination of less stable oxides. Electrochemical methods, electrochemical impedance spectra, polarisation resistance, and Mott-Schottky plot were measured in a physiological saline solution. The results of the measurements showed that ion implantation does not have a significant negative effect on the corrosion behaviour of the material. The best results of the alloys investigated were achieved by the Ti-36Nb-6Ta alloy. The combination of niobium and tantalum nitrides had a positive effect on the corrosion resistance of this alloy. After surface treatment, the polarization resistance of this alloy increased, 2.3 × 106 Ω·cm2, demonstrating higher corrosion resistance of the alloy. These results were also supported by the results of electrochemical impedance spectroscopy.


Subject(s)
Alloys , Titanium , Titanium/chemistry , Alloys/chemistry , Niobium/chemistry , Tantalum/chemistry , Electrochemical Techniques , Corrosion , Surface Properties , Materials Testing
2.
Materials (Basel) ; 14(24)2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34947506

ABSTRACT

In the field of orthopedic or dental implants, titanium and its alloys are most commonly used because of their excellent mechanical and corrosion properties and good biocompatibility. After implantation into the patient's body, there is a high risk of developing bacterial inflammation, which negatively affects the surrounding tissues and the implant itself. Early detection of inflammation could be done with a pH sensor. In this work, pH-sensitive systems based on TiO2-Ru and TiO2-RuO2 combinations were fabricated and investigated. As a base material, Ti-6Al-4V alloy nanostructured by anodic oxidation was used. Ruthenium was successfully deposited on nanotubular TiO2 using cyclic polarization, galvanostatic and potentiostatic mode. Potentiostatic mode proved to be the most suitable. The selected samples were oxidized by cyclic polarization to form a TiO2-RuO2 system. The success of the oxidation was confirmed by XPS analysis. The electrochemical response of the systems to pH change was measured in saline solution using different techniques. The measurement of open circuit potential showed that unoxidized samples (TiO2-Ru) exhibited sub-Nernstian behavior (39.2 and 35.8 mV/pH). The oxidized sample (TiO2-RuO2) containing the highest amount of Ru exhibited super-Nernstian behavior (67.3 mV/pH). The Mott-Schottky analysis proved to be the best method. The use of the electrochemical impedance method can also be considered, provided that greater stability of the samples is achieved.

SELECTION OF CITATIONS
SEARCH DETAIL
...